Using natural class hierarchies in multi-class visual classification

被引:1
|
作者
Autio, Ilkka [1 ]
机构
[1] Univ Helsinki, Dept Comp Sci, FIN-00014 Helsinki, Finland
关键词
object recognition; object classification; appearance-based object recognition; sequence-based object recognition; multi-object recognition; hierarchic object recognition; efficient object recognition;
D O I
10.1016/j.patcog.2006.01.015
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We address the problem of computationally efficient visual classification of objects, and propose a system for solving multi-class problems in domains that have inherent hierarchic structure, such as subclass-superclass-relationships based on visual similarity. Class relationships are used at runtime to select the computationally simplest feature space that allows classification at high level of confidence for each example view. Classification accuracies can then be further improved using rank-order voting over multiple views. Our experimental results show that our system compares favorably to previously published results using a demanding benchmark. The results support the hypothesis that class hierarchies based on visual similarities are feasible and useful in controlling the accuracy vs. speed tradeoffs in classification. (c) 2006 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:1290 / 1299
页数:10
相关论文
共 50 条
  • [21] Reduction Stumps for Multi-class Classification
    Mohr, Felix
    Wever, Marcel
    Huellermeier, Eyke
    ADVANCES IN INTELLIGENT DATA ANALYSIS XVII, IDA 2018, 2018, 11191 : 225 - 237
  • [22] A sequential model for multi-class classification
    Even-Zohar, Y
    Roth, D
    PROCEEDINGS OF THE 2001 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING, 2001, : 10 - 19
  • [23] Novel approach to multi-class classification
    Fang, Y
    Qi, FH
    JOURNAL OF INFRARED AND MILLIMETER WAVES, 2004, 23 (06) : 418 - 422
  • [24] Learning a Multi-class Discriminative Dictionary with Nonredundancy Constraints for Visual Classification
    Liu, Zhao
    Wu, Yuwei
    Yuan, Junsong
    Tang, Yap-peng
    MM'16: PROCEEDINGS OF THE 2016 ACM MULTIMEDIA CONFERENCE, 2016, : 421 - 425
  • [25] Parzen windows for multi-class classification
    Pan, Zhi-Wei
    Xiang, Dao-Hong
    Xiao, Quan-Wu
    Zhou, Ding-Xuan
    JOURNAL OF COMPLEXITY, 2008, 24 (5-6) : 606 - 618
  • [26] Credal ensembling in multi-class classification
    Nguyen, Vu-Linh
    Zhang, Haifei
    Destercke, Sebastien
    MACHINE LEARNING, 2025, 114 (01)
  • [27] An algebraic multi-class classification method
    He, Q
    Liu, ZY
    Shi, ZZ
    PROCEEDINGS OF THE 2004 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7, 2004, : 3307 - 3312
  • [28] On multi-class classification by way of niching
    McIntyre, AR
    Heywood, MI
    GENETIC AND EVOLUTIONARY COMPUTATION GECCO 2004 , PT 2, PROCEEDINGS, 2004, 3103 : 581 - 592
  • [29] Multi-class Motor Imagery Classification using Multi-class SVM with Multi-band Riemannian Tangent Space Mapping
    Shin, Jinhyo
    Chung, Wonzoo
    2023 11TH INTERNATIONAL WINTER CONFERENCE ON BRAIN-COMPUTER INTERFACE, BCI, 2023,
  • [30] A Novel Incremental Class Learning Technique for Multi-class Classification
    Er, Meng Joo
    Yalavarthi, Vijaya Krishna
    Wang, Ning
    Venkatesan, Rajasekar
    ADVANCES IN NEURAL NETWORKS - ISNN 2016, 2016, 9719 : 474 - 481