NONPARAMETRIC BAYESIAN ESTIMATION FOR MULTIVARIATE HAWKES PROCESSES

被引:13
|
作者
Donnet, Sophie [1 ]
Rivoirard, Vincent [2 ]
Rousseau, Judith [2 ]
机构
[1] Univ Paris Saclay, INRA, Paris, France
[2] Univ Paris 09, UMR 7534, CNRS, CEREMADE, Paris, France
来源
ANNALS OF STATISTICS | 2020年 / 48卷 / 05期
关键词
Multivariate counting process; Hawkes processes; nonparametric Bayesian estimation; posterior concentration rates; CONVERGENCE-RATES; FUNCTIONAL CONNECTIVITY; POSTERIOR DISTRIBUTIONS; STATISTICAL-MODELS; SPIKE TRAINS; OCCURRENCES; MIXTURES;
D O I
10.1214/19-AOS1903
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper studies nonparametric estimation of parameters of multivariate Hawkes processes. We consider the Bayesian setting and derive posterior concentration rates. First, rates are derived for L-1-metrics for stochastic intensities of the Hawkes process. We then deduce rates for the L-1-norm of interactions functions of the process. Our results are exemplified by using priors based on piecewise constant functions, with regular or random partitions and priors based on mixtures of Betas distributions. We also present a simulation study to illustrate our results and to study empirically the inference on functional connectivity graphs of neurons
引用
收藏
页码:2698 / 2727
页数:30
相关论文
共 50 条
  • [31] Bayesian nonparametric multivariate ordinal regression
    Bao, Junshu
    Hanson, Timothy E.
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2015, 43 (03): : 337 - 357
  • [32] Bayesian nonparametric tests for multivariate locations
    Bhattacharya, Indrabati
    Ghosal, Subhashis
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2022, 219 : 1 - 12
  • [33] Online Learning for Mixture of Multivariate Hawkes Processes
    Ghassemi, Mohsen
    Dalmasso, Niccolo
    Lamba, Simran
    Potluru, Vamsi K.
    Balch, Tucker
    Shah, Sameena
    Veloso, Manuela
    3RD ACM INTERNATIONAL CONFERENCE ON AI IN FINANCE, ICAIF 2022, 2022, : 506 - 513
  • [34] Construction and Simulation of Generalized Multivariate Hawkes Processes
    Tomasz R. Bielecki
    Jacek Jakubowski
    Mariusz Niewęgłowski
    Methodology and Computing in Applied Probability, 2022, 24 : 2865 - 2896
  • [35] Multivariate Spatiotemporal Hawkes Processes and Network Reconstruction
    Yuan, Baichuan
    Li, Hao
    Bertozzi, Andrea L.
    Brantingham, P. Jeffrey
    Porter, Mason A.
    SIAM JOURNAL ON MATHEMATICS OF DATA SCIENCE, 2019, 1 (02): : 356 - 382
  • [36] On nonparametric density estimation for multivariate linear long-memory processes
    Beran, Jan
    Telkmann, Klaus
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2018, 47 (22) : 5460 - 5473
  • [37] A nonparametric estimation procedure for the Hawkes process: comparison with maximum likelihood estimation
    Kirchner, M.
    Bercher, A.
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2018, 88 (06) : 1106 - 1116
  • [38] Nonparametric Estimation of Multivariate Mixtures
    Zheng, Chaowen
    Wu, Yichao
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2020, 115 (531) : 1456 - 1471
  • [39] Nonparametric estimation of multivariate quantiles
    Coblenz, M.
    Dyckerhoff, R.
    Grothe, O.
    ENVIRONMETRICS, 2018, 29 (02)
  • [40] Bayesian Estimation of Multivariate Stochastic Volatility Modeled by Wishart Processes
    Rinnergschwentner, Wolfgang
    Tappeiner, Gottfried
    Walde, Janette
    AEBD '09: PROCEEDINGS OF THE WORLD MULTICONFERENCE ON APPLIED ECONOMICS, BUSINESS AND DEVELOPMENT, 2009, : 169 - 174