Global structure and geodesics for Koenigs superintegrable systems

被引:6
|
作者
Valent, Galliano [1 ]
机构
[1] Phys Lab, Math Provence, 19 Bis Blvd Emile Zola, F-13100 Aix En Provence, France
来源
REGULAR & CHAOTIC DYNAMICS | 2016年 / 21卷 / 05期
关键词
superintegrable two-dimensional systems; analysis on manifolds; quantization; INTEGRABLE SYSTEMS; METRICS; SPACE;
D O I
10.1134/S1560354716050014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a new derivation of the local structure of Koenigs metrics using a framework laid down by Matveev and Shevchishin. All of these dynamical systems allow for a potential preserving their superintegrability (SI) and most of them are shown to be globally defined on either a"e(2) or a"i(2). Their geodesic flows are easily determined thanks to their quadratic integrals. Using Carter (or minimal) quantization, we show that the formal SI is preserved at the quantum level and for two metrics, for which all of the geodesics are closed, it is even possible to compute the classical action variables and the point spectrum of the quantum Hamiltonian.
引用
收藏
页码:477 / 509
页数:33
相关论文
共 50 条
  • [31] Superintegrable systems and recursion operators
    Sparano, G
    MODERN PHYSICS LETTERS A, 2003, 18 (33-35) : 2501 - 2507
  • [32] Quantum superintegrable Hamiltonian systems
    Calzada, JA
    Negro, J
    del Olmo, MA
    5TH WIGNER SYMPOSIUM, PROCEEDINGS, 1998, : 233 - 235
  • [33] The geometry of integrable and superintegrable systems
    A. Ibort
    G. Marmo
    Theoretical and Mathematical Physics, 2012, 172 : 1109 - 1117
  • [34] Integrable and superintegrable systems with spin
    Winternitz, Pavel
    Yurdusen, Ismet
    JOURNAL OF MATHEMATICAL PHYSICS, 2006, 47 (10)
  • [35] Superintegrable Lissajous systems on the sphere
    J. A. Calzada
    Ş. Kuru
    J. Negro
    The European Physical Journal Plus, 129
  • [36] Superintegrable Lissajous systems on the sphere
    Calzada, J. A.
    Kuru, S.
    Negro, J.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2014, 129 (08): : 1 - 15
  • [37] Superintegrable systems on Poisson manifolds
    Kurov, A.
    Sardanashvily, G.
    XXIV INTERNATIONAL CONFERENCE ON INTEGRABLE SYSTEMS AND QUANTUM SYMMETRIES (ISQS-24), 2017, 804
  • [38] Contraction of superintegrable Hamiltonian systems
    Calzada, JA
    Negro, J
    del Olmo, MA
    Rodríguez, MA
    JOURNAL OF MATHEMATICAL PHYSICS, 2000, 41 (01) : 317 - 336
  • [39] Superintegrable systems in Darboux spaces
    Kalnins, EG
    Kress, JM
    Miller, W
    Winternitz, P
    JOURNAL OF MATHEMATICAL PHYSICS, 2003, 44 (12) : 5811 - 5848
  • [40] Massless geodesics in AdS5 x Y(p, q) as a superintegrable system
    Rubin de Celis, Emilio
    Santillan, Osvaldo P.
    JOURNAL OF HIGH ENERGY PHYSICS, 2012, (09):