Global structure and geodesics for Koenigs superintegrable systems

被引:6
|
作者
Valent, Galliano [1 ]
机构
[1] Phys Lab, Math Provence, 19 Bis Blvd Emile Zola, F-13100 Aix En Provence, France
来源
REGULAR & CHAOTIC DYNAMICS | 2016年 / 21卷 / 05期
关键词
superintegrable two-dimensional systems; analysis on manifolds; quantization; INTEGRABLE SYSTEMS; METRICS; SPACE;
D O I
10.1134/S1560354716050014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a new derivation of the local structure of Koenigs metrics using a framework laid down by Matveev and Shevchishin. All of these dynamical systems allow for a potential preserving their superintegrability (SI) and most of them are shown to be globally defined on either a"e(2) or a"i(2). Their geodesic flows are easily determined thanks to their quadratic integrals. Using Carter (or minimal) quantization, we show that the formal SI is preserved at the quantum level and for two metrics, for which all of the geodesics are closed, it is even possible to compute the classical action variables and the point spectrum of the quantum Hamiltonian.
引用
收藏
页码:477 / 509
页数:33
相关论文
共 50 条
  • [1] Global structure and geodesics for Koenigs superintegrable systems
    Galliano Valent
    Regular and Chaotic Dynamics, 2016, 21 : 477 - 509
  • [2] Koenigs Theorem and Superintegrable Liouville Metrics
    Valent, Galliano
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2023, 19
  • [3] Generalised Darboux-Koenigs Metrics and 3-Dimensional Superintegrable Systems
    Fordy, Allan P.
    Huang, Qing
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2019, 15
  • [4] Note on the algebraic structure of superintegrable systems
    Gonera, C.
    Majewski, M.
    2001, Jagellonian University (32):
  • [5] Note on the algebraic structure of superintegrable systems
    Gonera, C
    Majewski, M
    ACTA PHYSICA POLONICA B, 2001, 32 (04): : 1167 - 1171
  • [6] Superintegrable Extensions of Superintegrable Systems
    Chanu, Claudia M.
    Degiovanni, Luca
    Rastelli, Giovanni
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2012, 8
  • [7] Fine structure for second order superintegrable systems
    Kalnins, Ernie G.
    Kress, Jonathan M.
    Miller, Willard, Jr.
    SYMMETRIES AND OVERDETERMINED SYSTEMS OF PARTIAL DIFFERENTIAL EQUATIONS, 2008, 144 : 77 - +
  • [8] SUPERINTEGRABLE SYSTEMS
    KUPERSHMIDT, B
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA-PHYSICAL SCIENCES, 1984, 81 (20): : 6562 - 6563
  • [9] Structure relations for the symmetry algebras of quantum superintegrable systems
    Kalnins, E. G.
    Kress, J. M.
    Miller, W., Jr.
    7TH INTERNATIONAL CONFERENCE ON QUANTUM THEORY AND SYMMETRIES (QTS7), 2012, 343
  • [10] On maximally superintegrable systems
    Tsiganov, A. V.
    REGULAR & CHAOTIC DYNAMICS, 2008, 13 (03): : 178 - 190