Adaptive feature fusion with attention mechanism for multi-scale target detection

被引:32
|
作者
Ju, Moran [1 ,2 ,3 ,4 ,5 ]
Luo, Jiangning [6 ]
Wang, Zhongbo [1 ,2 ,3 ,4 ,5 ]
Luo, Haibo [1 ,2 ,4 ,5 ]
机构
[1] Chinese Acad Sci, Shenyang Inst Automat, Shenyang 110016, Liaoning, Peoples R China
[2] Chinese Acad Sci, Inst Robot & Intelligent Mfg, Shenyang 110016, Liaoning, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[4] Chinese Acad Sci, Key Lab Opt Elect Informat Proc, Shenyang 110016, Liaoning, Peoples R China
[5] Key Lab Image Understanding & Comp Vis, Shenyang 110016, Liaoning, Peoples R China
[6] McGill Univ, Montreal, PQ H3A 0G4, Canada
来源
NEURAL COMPUTING & APPLICATIONS | 2021年 / 33卷 / 07期
关键词
Deep learning; Target detection; Adaptive feature fusion; Attention mechanism; RECOGNITION;
D O I
10.1007/s00521-020-05150-9
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
To detect the targets of different sizes, multi-scale output is used by target detectors such as YOLO V3 and DSSD. To improve the detection performance, YOLO V3 and DSSD perform feature fusion by combining two adjacent scales. However, the feature fusion only between the adjacent scales is not sufficient. It hasn't made advantage of the features at other scales. What is more, as a common operation for feature fusion, concatenating can't provide a mechanism to learn the importance and correlation of the features at different scales. In this paper, we propose adaptive feature fusion with attention mechanism (AFFAM) for multi-scale target detection. AFFAM utilizes pathway layer and subpixel convolution layer to resize the feature maps, which is helpful to learn better and complex feature mapping. In addition, AFFAM utilizes global attention mechanism and spatial position attention mechanism, respectively, to learn the correlation of the channel features and the importance of the spatial features at different scales adaptively. Finally, we combine AFFAM with YOLO V3 to build an efficient multi-scale target detector. The comparative experiments are conducted on PASCAL VOC dataset, KITTI dataset and Smart UVM dataset. Compared with the state-of-the-art target detectors, YOLO V3 with AFFAM achieved 84.34% mean average precision (mAP) at 19.9 FPS on PASCAL VOC dataset, 87.2% mAP at 21 FPS on KITTI dataset and 99.22% mAP at 20.6 FPS on Smart UVM dataset which outperforms other advanced target detectors.
引用
收藏
页码:2769 / 2781
页数:13
相关论文
共 50 条
  • [31] A Video Target Re-Recognition Method Based on Adaptive Attention Enhancement and Multi-Scale Feature Fusion
    Xu, Zhiming
    Chen, Jinhuang
    Chen, Zhaoqi
    Zou, Jiajun
    Wang, Mengbo
    Qiu, Zemin
    IEEE ACCESS, 2024, 12 : 9392 - 9399
  • [32] Integrating attention mechanism and multi-scale feature extraction for fall detection
    Chen, Hao
    Gu, Wenye
    Zhang, Qiong
    Li, Xiujing
    Jiang, Xiaojing
    HELIYON, 2024, 10 (10)
  • [33] MSFFA: a multi-scale feature fusion and attention mechanism network for crowd counting
    Zhaoxin Li
    Shuhua Lu
    Yishan Dong
    Jingyuan Guo
    The Visual Computer, 2023, 39 : 1045 - 1056
  • [34] MSFFA: a multi-scale feature fusion and attention mechanism network for crowd counting
    Li, Zhaoxin
    Lu, Shuhua
    Dong, Yishan
    Guo, Jingyuan
    VISUAL COMPUTER, 2023, 39 (03): : 1045 - 1056
  • [35] Robot Grasp Detection with Loss-Guided Collaborative Attention Mechanism and Multi-Scale Feature Fusion
    Fang, Haibing
    Wang, Caixia
    Chen, Yong
    APPLIED SCIENCES-BASEL, 2024, 14 (12):
  • [36] Small object detection in remote sensing images based on attention mechanism and multi-scale feature fusion
    Zhang, Li-guo
    Wang, Lei
    Jin, Mei
    Geng, Xing-shuo
    Shen, Qian
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2022, 43 (09) : 3280 - 3297
  • [37] Remote Sensing Small Object Detection Network Based on Attention Mechanism and Multi-Scale Feature Fusion
    Qu, Junsuo
    Tang, Zongbing
    Zhang, Le
    Zhang, Yanghai
    Zhang, Zhenguo
    REMOTE SENSING, 2023, 15 (11)
  • [38] PCB defects target detection combining multi-scale and attention mechanism
    Jiang, Wujin
    Li, Taifu
    Zhang, Shaolin
    Chen, Wenbin
    Yang, Jie
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2023, 123
  • [39] An Improved U-Net Infrared Small Target Detection Algorithm Based on Multi-Scale Feature Decomposition and Fusion and Attention Mechanism
    Fan, Xiangsuo
    Ding, Wentao
    Li, Xuyang
    Li, Tingting
    Hu, Bo
    Shi, Yuqiu
    SENSORS, 2024, 24 (13)
  • [40] A Robust Vehicle Detection Model Based on Attention and Multi-scale Feature Fusion
    Zhu, Yuxin
    Liu, Wenbo
    Yan, Fei
    Li, Jun
    2022 14TH INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS AND SIGNAL PROCESSING, WCSP, 2022, : 143 - 148