Quadratic forms of multivariate skew normal-symmetric distributions

被引:10
|
作者
Huang, WJ [1 ]
Chen, YH [1 ]
机构
[1] NAtl Univ Kaohsiung, Dept Appl Math, Kaohsiung 811, Taiwan
关键词
chi-square distribution; independence; moment generating function; non-normal models; quadratic form; skew normal distribution; skew symmetric distribution;
D O I
10.1016/j.spl.2005.10.018
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Following the paper by Gupta and Chang (Multivariate skew-symmetric distributions. Appl. Math. Lett. 16, 643-646 2003.) we generate a multivariate skew normal-symmetric distribution with probability density function of the form f(z)(z) = 2 phi(p)(z; Omega)G(alpha'z), where Omega > 0, alpha is an element of R-rho, phi(p)(z;.Omega) is the p-dimensional normal p.d.f. with zero mean vector and correlation matrix Omega, and G is taken to be an absolutely continuous function such that G' is symmetric about 0. First we obtain the moment generating function of certain quadratic forms. It is interesting to find that the distributions of some quadratic forms are independent of G. Then the joint moment generating functions of a linear compound and a quadratic form, and two quadratic forms, and conditions for their independence are given. Finally we take G to be one of normal, Laplace, logistic or uniform distribution, and determine the distribution of a special quadratic form for each case. (C) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:871 / 879
页数:9
相关论文
共 50 条
  • [21] Multivariate extremes of generalized skew-normal distributions
    Lysenko, Natalia
    Roy, Parthanil
    Waeber, Rolf
    STATISTICS & PROBABILITY LETTERS, 2009, 79 (04) : 525 - 533
  • [22] Multivariate skew-normal distributions with applications in insurance
    Vernic, R
    INSURANCE MATHEMATICS & ECONOMICS, 2006, 38 (02): : 413 - 426
  • [23] Sparsity-regularized skewness estimation for the multivariate skew normal and multivariate skew t distributions
    Wang, Sheng
    Zimmerman, Dale L.
    Breheny, Patrick
    JOURNAL OF MULTIVARIATE ANALYSIS, 2020, 179
  • [24] Shape mixtures of multivariate skew-normal distributions
    Arellano-Valle, Reinaldo B.
    Genton, Marc G.
    Loschi, Rosangela H.
    JOURNAL OF MULTIVARIATE ANALYSIS, 2009, 100 (01) : 91 - 101
  • [25] Moments of skew-normal random vectors and their quadratic forms
    Genton, MG
    He, L
    Liu, XW
    STATISTICS & PROBABILITY LETTERS, 2001, 51 (04) : 319 - 325
  • [26] Finite mixture of semiparametric multivariate skew-normal distributions
    Lee, Hyunjae
    Seo, Byungtae
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2024, 53 (11) : 5659 - 5679
  • [27] Multivariate skew-normal distributions with applications in insurance.
    Raluca, V
    INSURANCE MATHEMATICS & ECONOMICS, 2005, 37 (02): : 376 - 376
  • [28] Scale mixtures of multivariate centered skew-normal distributions
    de Freitas, Joao Victor B.
    Bondon, Pascal
    Azevedo, Caio L. N.
    Reisen, Valderio A.
    Nobre, Juvencio S.
    STATISTICS AND COMPUTING, 2024, 34 (06)
  • [29] Scale and shape mixtures of multivariate skew-normal distributions
    Arellano-Valle, Reinaldo B.
    Ferreira, Clecio S.
    Genton, Marc G.
    JOURNAL OF MULTIVARIATE ANALYSIS, 2018, 166 : 98 - 110
  • [30] Skew-Symmetric Generalized Normal and Generalized t Distributions
    Rad, Najmeh Nakhaei
    Salehi, Mahdi
    Mehrali, Yaser
    Chen, Ding-Geng
    AXIOMS, 2024, 13 (11)