Single-Cell Enzyme-Free Dissociation of Neurospheres Using a Microfluidic Chip

被引:23
|
作者
Lin, Ching-Hui [1 ,3 ]
Lee, Don-Ching [2 ]
Chang, Hao-Chen [1 ,3 ]
Chiu, Ing-Ming [2 ,3 ,4 ]
Hsu, Chia-Hsien [1 ,3 ]
机构
[1] Natl Hlth Res Inst, Inst Biomed Engn & Nanomed, Zhunan 35053, Miaoli, Taiwan
[2] Natl Hlth Res Inst, Inst Cellular & Syst Med, Zhunan 35053, Miaoli, Taiwan
[3] Natl Chung Hsing Univ, PhD Program Tissue Engn & Regenerat Med, Taichung 40227, Taiwan
[4] Natl Chung Hsing Univ, Dept Life Sci, Taichung 40227, Taiwan
关键词
FLUID SHEAR-STRESS; NEURAL STEM/PROGENITOR CELLS; STEM-CELLS; DIFFERENTIATION; GROWTH; MICROVORTEX; PROMOTER; CULTURE; DRIVEN;
D O I
10.1021/ac402724b
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Obtaining single dissociated cells from neurospheres is difficult using nonenzymatic methods. In this paper we report the development of a microfluidic-chip-based approach that utilizes flow and microstructures to dissociate neurospheres. We show that this microfluidic-chip-based neurosphere-dissociation method can generate high yields of single cells from dissociated neurospheres of mouse KT98 and DC115 cell models (passage number, 3-8; diameter range, 40-250 mu m): 90% and 95%, respectively. The microfluidic-chip-dissociated cells had high viabilities (80-85%) and the ability to regrow into neurospheres, demonstrating the applicability of this device to neurosphere assay applications. In addition, the dissociated cells retained their normal differentiation potentials, as shown by their capabilities to differentiate into three neural lineages (neurons, astroglia, and oligodendrocytes) when cultured in differentiation culture conditions. Since this microfluidic-chip-based method does not require the use of enzymatic reagents, the risk of contamination from exogenous substances could be reduced, making it an attractive tool for a wide range of applications where neurosphere dissociation is needed.
引用
收藏
页码:11920 / 11928
页数:9
相关论文
共 50 条
  • [41] Selective Single-Cell Expansion on a Microfluidic Chip for Studying Heterogeneity of Glioma Stem Cells
    Li, Peiwen
    Qin, Zixi
    Zhong, Ying
    Kang, Hui
    Zhang, Zixuan
    Hu, Yan
    Wen, Lintao
    Wang, Lihui
    ANALYTICAL CHEMISTRY, 2022, 94 (07) : 3245 - 3253
  • [42] A self-priming digital microfluidic chip for single-cell antibiotic susceptibility testing
    Pang, Zirui
    Shi, Lulu
    Chai, Yao
    Wan, Liang
    Zhang, Xuming
    Wang, Mingyu
    Tao, Jifang
    MICROCHEMICAL JOURNAL, 2025, 209
  • [43] Measurement of single-cell adhesion strength using a microfluidic assay
    Kevin V. Christ
    Kyle B. Williamson
    Kristyn S. Masters
    Kevin T. Turner
    Biomedical Microdevices, 2010, 12 : 443 - 455
  • [44] Measurement of single-cell adhesion strength using a microfluidic assay
    Christ, Kevin V.
    Williamson, Kyle B.
    Masters, Kristyn S.
    Turner, Kevin T.
    BIOMEDICAL MICRODEVICES, 2010, 12 (03) : 443 - 455
  • [45] Microfluidic Cell Trapping for Single-Cell Analysis
    Deng, Bing
    Wang, Heyi
    Tan, Zhaoyi
    Quan, Yi
    MICROMACHINES, 2019, 10 (06)
  • [46] Microfluidic device for single-cell analysis
    Wheeler, AR
    Throndset, WR
    Whelan, RJ
    Leach, AM
    Zare, RN
    Liao, YH
    Farrell, K
    Manger, ID
    Daridon, A
    ANALYTICAL CHEMISTRY, 2003, 75 (14) : 3581 - 3586
  • [47] Single-cell Analysis with Microfluidic Devices
    Ou, Xiaowen
    Chen, Peng
    Idut, Bi-Feng
    ANALYTICAL SCIENCES, 2019, 35 (06) : 609 - 618
  • [48] Microfluidic Single-Cell Omics Analysis
    Xu, Xing
    Wang, Junxia
    Wu, Lingling
    Guo, Jingjing
    Song, Yanling
    Tian, Tian
    Wang, Wei
    Zhu, Zhi
    Yang, Chaoyong
    SMALL, 2020, 16 (09)
  • [49] Single-cell Analysis with Microfluidic Devices
    Xiaowen Ou
    Peng Chen
    Bi-Feng Liu
    Analytical Sciences, 2019, 35 : 609 - 618
  • [50] Microfluidic microarray for single-cell analysis
    Rothbauer, Mario
    Schuller, Patrick
    Afkhami, Reza
    Wanzenboeck, Heinz D.
    Ertl, Peter
    Zirath, Helene
    ELEKTROTECHNIK UND INFORMATIONSTECHNIK, 2020, 137 (03): : 108 - 112