An analytic and parameter-free wavefunction for studying the stability of three-body systems

被引:0
|
作者
Ancarani, L. U. [1 ]
Gasaneo, G. [2 ,3 ]
机构
[1] Univ Paul Verlaine Metz, Lab Phys Mol & Collis, Metz, France
[2] Univ Nacl Sur, RA-8000 Bahia Blanca, Buenos Aires, Argentina
[3] Consejo Nacl Invest Cient & Tecn, RA-1033 Buenos Aires, DF, Argentina
来源
HYPERFINE INTERACTIONS | 2009年 / 193卷 / 1-3期
关键词
Three-body systems; Stability; Cusp conditions; QUANTUM-MECHANICS; ATOMS;
D O I
10.1007/s10751-009-0053-2
中图分类号
O64 [物理化学(理论化学)、化学物理学]; O56 [分子物理学、原子物理学];
学科分类号
070203 ; 070304 ; 081704 ; 1406 ;
摘要
An analytic wavefunction is proposed for the ground state of general atomic three-body systems in which two light particles are negatively charged and the third (heavy) is positively charged. By construction the wavefunction (i) has the same analytical form for all systems; (ii) is parameter-free; (iii) is nodeless; (iv) satisfies all two-particle cusp conditions; and (v) yields reasonable ground state energies for several three-body systems, including the prediction of a bound state for H-, D-, T- and Mu(-). Simple polynomial fits are provided for certain important subcases, allowing for a rapid estimate of the ground state energy and of the stability of three-body systems.
引用
收藏
页码:135 / 139
页数:5
相关论文
共 50 条
  • [11] Equilibrium configurations of tethered three-body systems and their stability
    Misra, AK
    JOURNAL OF THE ASTRONAUTICAL SCIENCES, 2002, 50 (03): : 241 - 253
  • [12] Quantum criticality and stability of three-body Coulomb systems
    Kais, S
    Shi, QC
    PHYSICAL REVIEW A, 2000, 62 (06): : 060502 - 060501
  • [13] A simple parameter-free wavefunction for the ground state of two-electron atoms
    Ancarani, L. U.
    Rodriguez, K. V.
    Gasaneo, G.
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2007, 40 (13) : 2695 - 2702
  • [14] Construction of stability regions in the three-body problem using parameter elimination
    Kunitsyn, A.L.
    Journal of Applied Mathematics and Mechanics, 2009, 73 (06): : 637 - 641
  • [15] Construction of stability regions in the three-body problem using parameter elimination
    Kunitsyn, A. L.
    PMM JOURNAL OF APPLIED MATHEMATICS AND MECHANICS, 2009, 73 (06): : 637 - 641
  • [16] The rectilinear three-body problem as a basis for studying highly eccentric systems
    Voyatzis, G.
    Tsiganis, K.
    Gaitanas, M.
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2018, 130 (01):
  • [17] Three-body force and Coulomb force in three-body systems
    Oryu, S.
    Hiratsuka, Y.
    Nishinohara, S.
    Gojuki, S.
    Chiba, S.
    NEW FACET OF THREE NUCLEON FORCE - 50 YEARS OF FUJITA MIYAZAWA THREE NUCLEON FORCE (FM 50), 2007, 1011 : 265 - +
  • [18] The rectilinear three-body problem as a basis for studying highly eccentric systems
    G. Voyatzis
    K. Tsiganis
    M. Gaitanas
    Celestial Mechanics and Dynamical Astronomy, 2018, 130
  • [19] The Universality of the Efimov Three-body Parameter
    D'Incao, J. P.
    Wang, J.
    Esry, B. D.
    Greene, C. H.
    FEW-BODY SYSTEMS, 2013, 54 (7-10) : 1523 - 1527
  • [20] The Universality of the Efimov Three-body Parameter
    J. P. D’Incao
    J. Wang
    B. D. Esry
    C. H. Greene
    Few-Body Systems, 2013, 54 : 1523 - 1527