A simply connected surface of general type with pg=0 and K2=3

被引:33
|
作者
Park, Heesang [1 ]
Park, Jongil [1 ]
Shin, Dongsoo [2 ]
机构
[1] Seoul Natl Univ, Dept Math Sci, Seoul 151747, South Korea
[2] Pohang Univ Sci & Technol, Dept Math, Pohang 790784, Gyungbuk, South Korea
关键词
SMOOTH; 4-MANIFOLDS; RATIONAL BLOWDOWNS; SINGULARITIES; DEFORMATIONS; COMPLEX;
D O I
10.2140/gt.2009.13.743
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Motivated by a recent result of Y Lee and the second author [9], we construct a simply connected minimal complex surface of general type with p(g) = 0 and K-2 = 3 using a rational blow-down surgery and Q-Gorenstein smoothing theory. In a similar fashion, we also construct a new simply connected symplectic 4-manifold with b(2)(+) = 1 and K-2 = 4.
引用
收藏
页码:743 / 767
页数:25
相关论文
共 50 条
  • [21] Algebraic surfaces of general type with K2=3Pg - 5
    Ling, Songbo
    COMMUNICATIONS IN ALGEBRA, 2022, 50 (05) : 1942 - 1960
  • [22] ALGEBRAIC SURFACE WITH K AMPLE, (K2) = 9, PG = Q = 0
    MUMFORD, D
    AMERICAN JOURNAL OF MATHEMATICS, 1979, 101 (01) : 233 - 244
  • [23] Involutions on surfaces with pg = q = 0 and K2 = 3
    Carlos Rito
    Geometriae Dedicata, 2012, 157 : 319 - 330
  • [24] The moduli space of even surfaces of general type with K2=8, pg=4 and q=0
    Catanese, Fabrizio
    Liu, Wenfei
    Pignatelli, Roberto
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2014, 101 (06): : 925 - 948
  • [25] Involutions on surfaces with pg = q=0 and K2=3
    Rito, Carlos
    GEOMETRIAE DEDICATA, 2012, 157 (01) : 319 - 330
  • [26] On Surfaces with pg=0 and K2=5
    Werner, Caryn
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2010, 53 (04): : 746 - 756
  • [27] Inoue type manifolds and Inoue surfaces: a connected component of the moduli space of surfaces with K2=7, pg=0
    Bauer, Ingrid
    Catanese, Fabrizio
    GEOMETRY AND ARITHMETIC, 2012, : 23 - +
  • [28] THE TATE CONJECTURE FOR A FAMILY OF SURFACES OF GENERAL TYPE WITH pg = q=1 AND K2=3
    Lyons, Christopher
    AMERICAN JOURNAL OF MATHEMATICS, 2015, 137 (02) : 281 - 311
  • [29] The classification of minimal irregular surfaces of general type with K2= 2pg
    Ciliberto, Ciro
    Lopes, Margarida Mendes
    Pardini, Rita
    ALGEBRAIC GEOMETRY, 2014, 1 (04): : 479 - 488
  • [30] SURFACES WITH K2=2, PG=1, Q=0
    CATANESE, F
    DEBARRE, O
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1989, 395 : 1 - 55