On overfitting and post-selection uncertainty assessments

被引:17
|
作者
Hong, L. [1 ]
Kuffner, T. A. [2 ]
Martin, R. [3 ]
机构
[1] Robert Morris Univ, Dept Math, 6001 Univ Blvd, Moon Township, PA 15108 USA
[2] Washington Univ, Dept Math, 1 Brookings Dr,Campus Box 1146, St Louis, MO 63130 USA
[3] North Carolina State Univ, Dept Stat, 2311 Stinson Dr,Campus Box 8203, Raleigh, NC 27695 USA
基金
美国国家科学基金会;
关键词
Akaike information criterion; Bayesian information criterion; Model selection; Regression; MODEL;
D O I
10.1093/biomet/asx083
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
In a regression context, when the relevant subset of explanatory variables is uncertain, it is common to use a data-driven model selection procedure. Classical linear model theory, applied naively to the selected submodel, may not be valid because it ignores the selected submodel's dependence on the data. We provide an explanation of this phenomenon, in terms of overfitting, for a class of model selection criteria.
引用
收藏
页码:221 / 224
页数:4
相关论文
共 50 条
  • [1] Post-Selection Inference
    Kuchibhotla, Arun K.
    Kolassa, John E.
    Kuffner, Todd A.
    ANNUAL REVIEW OF STATISTICS AND ITS APPLICATION, 2022, 9 : 505 - 527
  • [2] Post-selection and quantum energetics
    Rogers, Spencer
    Jordan, Andrew N.
    arXiv, 2022,
  • [3] VALID POST-SELECTION INFERENCE
    Berk, Richard
    Brown, Lawrence
    Buja, Andreas
    Zhang, Kai
    Zhao, Linda
    ANNALS OF STATISTICS, 2013, 41 (02): : 802 - 837
  • [4] The Limits of Post-Selection Generalization
    Nissim, Kobbi
    Smith, Adam
    Steinke, Thomas
    Stemmer, Uri
    Ullman, Jonathan
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [5] The post-selection operator current
    Gray, John E.
    Addison, Stephen R.
    QUANTUM STUDIES-MATHEMATICS AND FOUNDATIONS, 2018, 5 (03) : 399 - 412
  • [6] An Analysis of Post-selection in Automatic Configuration
    Yuan, Zhi
    Stuetzle, Thomas
    de Oca, Marco A. Montes
    Lau, Hoong Chuin
    Birattari, Mauro
    GECCO'13: PROCEEDINGS OF THE 2013 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2013, : 1557 - 1564
  • [7] Automatic post-selection by ancillae thermalization
    Wright, L.
    Barratt, F.
    Dborin, J.
    Booth, G. H.
    Green, A. G.
    PHYSICAL REVIEW RESEARCH, 2021, 3 (03):
  • [8] Splitting strategies for post-selection inference
    Rasines, D. Garcia
    Young, G. A.
    BIOMETRIKA, 2023, 110 (03) : 597 - 614
  • [9] On Post-selection Inference in A/B Testing
    Deng, Alex
    Li, Yicheng
    Lu, Jiannan
    Ramamurthy, Vivek
    KDD '21: PROCEEDINGS OF THE 27TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2021, : 2743 - 2752
  • [10] The Post-Selection Probability Current and Its Implications
    Gray, John E.
    Parks, Allen D.
    QUANTUM INFORMATION AND COMPUTATION VII, 2009, 7342