Effects of free stream flow turbulence on blowoff characteristics of bluff-body stabilized premixed flames

被引:64
|
作者
Chowdhury, Bikram R. [1 ]
Cetegen, Baki M. [1 ]
机构
[1] Univ Connecticut, Dept Mech Engn, 191 Auditorium Rd,U-3139, Storrs, CT 06269 USA
关键词
Bluff-body stabilized premixed flames; Blowoff; Turbulence-flame interaction; OH PLIF; CH2O PLIF; PIV; LEAN BLOWOFF; EXTINCTION; DYNAMICS;
D O I
10.1016/j.combustflame.2017.12.002
中图分类号
O414.1 [热力学];
学科分类号
摘要
In this article we report on an experimental investigation of a bluff-body stabilized lean premixed flame subjected to different levels of free stream turbulence intensities (4, 14, 24 and 30%) at conditions approaching blowoff. The mean flow velocities ranged from 5 to 15 m/s. The turbulence Reynolds number based on integral length scale and rms velocity ranged from 44 to 4280. Simultaneous imaging of hydroxyl (OH) and formaldehyde (CH2O) by planar laser induced fluorescence and particle image velocimetry (PIV) was used to study the interaction between the flame and the flow field and determine the sequence of events leading to flame blowoff. CH2O fluorescence and the pixel-by-pixel multiplication of OH and CH2O fluorescence signals were utilized to mark the preheat and heat release regions of flame front respectively. The flame structure was observed to be strongly modified by the turbulent flow field which affects the lean blowoff limits. The flame blowoff equivalence ratio increased with increasing free stream turbulence levels owing to strong interactions of the turbulent flow with the flame and the resulting modification of flame surfaces and ensuing local flame extinction. For stably burning flames, the flame front predominantly enveloped the shear layer vortices for all the turbulent conditions. As blowoff was approached, the flame front and shear layer vortices entangled inducing high local strain rates on the flame front that exceed the extinction strain resulting in significant breaks along the reaction zone. At conditions near blowoff, wide regions of CH2O and heat release were observed inside the recirculation zone. Velocity vectors near the flame holes indicate the penetration of the reactants into the recirculation zone. Several properties were measured to characterize the near blowoff flames which include the strain rate and curvature statistics along the flame front, burning fraction, asymmetric index and the average duration of the blowoff event. (C) 2017 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
引用
收藏
页码:302 / 316
页数:15
相关论文
共 50 条
  • [31] Soot structure and flow characteristics in turbulent non-premixed methane flames stabilised on a bluff-body
    Rowhani, Amir
    Sun, Zhiwei
    Chinnici, Alfonso
    Medwell, Paul R.
    Nathan, Graham J.
    Dally, Bassam B.
    FUEL, 2023, 344
  • [32] A numerical investigation of the flame structure and blowoff characteristics of a bluff-body stabilized turbulent premixed flame (vol 202, pg 376, 2019)
    Wu, Bifen
    Zhao, Xinyu
    Chowdhury, Bikram Roy
    Cetegen, Baki M.
    Xu, Chao
    Lu, Tianfeng
    COMBUSTION AND FLAME, 2019, 208 : 492 - 492
  • [33] Effects of high shear on the structure and thickness of turbulent premixed methane/air flames stabilized on a bluff-body burner
    Magnotti, Gaetano
    Barlow, Robert S.
    COMBUSTION AND FLAME, 2015, 162 (01) : 100 - 114
  • [34] Investigation on bluff-body and swirl stabilized flames near lean blowoff with PIV/PLIF measurements and LES modelling
    Guo, Shilong
    Wang, Jinhua
    Zhang, Weijie
    Lin, Bingxuan
    Wu, Yun
    Yu, Senbin
    Li, Guohua
    Hu, Zhiyun
    Huang, Zuohua
    APPLIED THERMAL ENGINEERING, 2019, 160
  • [35] Preferential transport effects in premixed bluff-body stabilized CH4/H2 flames
    Barlow, Robert S.
    Dunn, Matthew J.
    Magnotti, Gaetano
    COMBUSTION AND FLAME, 2015, 162 (03) : 727 - 735
  • [36] Velocity fields of nonpremixed bluff-body stabilized flames
    Huang, RF
    Lin, CL
    JOURNAL OF ENERGY RESOURCES TECHNOLOGY-TRANSACTIONS OF THE ASME, 2000, 122 (02): : 88 - 93
  • [37] BLOWOFF CHARACTERISTICS OF A BLUFF-BODY STABILIZED, MULTI-ELEMENT, LEAN PREMIXED PRE-VAPORIZED COMBUSTOR FOR SUPERSONIC TRANSPORT APPLICATIONS
    Passarelli, Mitchell L.
    Wonfor, Samuel E.
    Zheng, Andy X.
    Mazumdar, Yi Chen
    Steinberg, Adam M.
    Bower, Hannah
    Hong, John
    Venkatesan, Krishna
    PROCEEDINGS OF ASME TURBO EXPO 2024: TURBOMACHINERY TECHNICAL CONFERENCE AND EXPOSITION, GT2024, VOL 3B, 2024,
  • [38] A COMPARISON OF BLUFF-BODY AND SWIRL-STABILIZED FLAMES
    CHEN, RH
    DRISCOLL, JF
    KELLY, J
    NAMAZIAN, M
    SCHEFER, RW
    COMBUSTION SCIENCE AND TECHNOLOGY, 1990, 71 (4-6) : 197 - 217
  • [39] Response dynamics of bluff-body stabilized conical premixed turbulent flames with spatial mixture gradients
    Chaudhuri, Swetaprovo
    Cetegen, Baki M.
    COMBUSTION AND FLAME, 2009, 156 (03) : 706 - 720
  • [40] Impact of swirl and bluff-body on the transfer function of premixed flames
    Gatti, M.
    Gaudron, R.
    Mirat, C.
    Zimmer, L.
    Schuller, T.
    PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2019, 37 (04) : 5197 - 5204