Expression of the maize MYB transcription factor ZmMYB3R enhances drought and salt stress tolerance in transgenic plants

被引:125
|
作者
Wu, Jiandong [1 ]
Jiang, Yingli [1 ]
Liang, Yani [1 ]
Chen, Long [1 ]
Chen, Weijun [1 ]
Cheng, Beijiu [1 ]
机构
[1] Anhui Agr Univ, Natl Engn Lab Crop Stress Resistance, Coll Life Sci, Hefei 230036, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
Maize; ZmMYB3R; Transcriptional regulation; ABA; Stomatal aperture; Abiotic stress; OSMOTIC-STRESS; SUPEROXIDE-DISMUTASE; SIGNAL-TRANSDUCTION; ECTOPIC EXPRESSION; GENE-EXPRESSION; ABSCISIC-ACID; COLD STRESS; CELL-CYCLE; C-MYB; ABA;
D O I
10.1016/j.plaphy.2019.02.010
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
MYB proteins are major transcription factors that play significant roles in plant defenses against various stresses. However, available information regarding stress-related MYB genes in maize is minimal. Herein, a maize MYB gene, ZmMYB3R, was cloned and functionally characterized. Subcellular localisation analysis showed that ZmMYB3R is localised to the nucleus. Yeast one-hybrid results revealed that ZmMYB3R has trans-activation activity, and a minimal activation domain at the C-terminus spanning residues 217-563. Gene expression analysis suggested that ZmMYB3R was induced by drought, salt and abscisic acid (ABA). Transgenic Arabidopsis plants overexpressing ZmMYB3R displayed enhanced growth performance and higher survival rates, elevated catalase (CAT), peroxidase (POD) and superoxide dismutase (SOD) enzyme activities, increased sensitivity to ABA, and regulation of the stomatal aperture, suggesting that ZmMYB3R enhances tolerance to drought and salt stress. qRT-PCR assays revealed elevated expression levels of stress/ABA genes in transgenic plants following stress treatments. Moreover, transgenic plants accumulated higher ABA content than wild-type plants under drought and salt stress conditions. Collectively, these results indicate that ZmMYB3R is a positive transcription factor that enhances tolerance to drought and salt stress via an ABA-dependent pathway. The findings may prove useful for engineering economically important crops.
引用
收藏
页码:179 / 188
页数:10
相关论文
共 50 条
  • [31] Wheat WRKY transcription factor TaWRKY24 confers drought and salt tolerance in transgenic plants
    Yu, Yongang
    He, Lingyun
    Wu, Yanxia
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2023, 205
  • [32] Overexpression of a maize MYB48 gene confers drought tolerance in transgenic arabidopsis plants
    Yan Wang
    Qianqian Wang
    MingLi Liu
    Chen Bo
    Xi Wang
    Qing Ma
    Beijiu Cheng
    Ronghao Cai
    Journal of Plant Biology, 2017, 60 : 612 - 621
  • [33] Forced expression of Mdmyb10, a myb transcription factor gene from apple, enhances tolerance to osmotic stress in transgenic Arabidopsis
    Gao, Jian-Jie
    Zhang, Zhen
    Peng, Ri-He
    Xiong, Ai-Sheng
    Xu, Jing
    Zhu, Bo
    Yao, Quan-Hong
    MOLECULAR BIOLOGY REPORTS, 2011, 38 (01) : 205 - 211
  • [34] Forced expression of Mdmyb10, a myb transcription factor gene from apple, enhances tolerance to osmotic stress in transgenic Arabidopsis
    Jian-Jie Gao
    Zhen Zhang
    Ri-He Peng
    Ai-Sheng Xiong
    Jing Xu
    Bo Zhu
    Quan-Hong Yao
    Molecular Biology Reports, 2011, 38 : 205 - 211
  • [35] MYB transcription factor: A new weapon for biotic stress tolerance in plants
    Biswas, Dew
    Gain, Hena
    Mandal, Arunava
    PLANT STRESS, 2023, 10
  • [36] Overexpression of a maize MYB48 gene confers drought tolerance in transgenic arabidopsis plants
    Wang, Yan
    Wang, Qianqian
    Liu, MingLi
    Bo, Chen
    Wang, Xi
    Ma, Qing
    Cheng, Beijiu
    Cai, Ronghao
    JOURNAL OF PLANT BIOLOGY, 2017, 60 (06) : 612 - 621
  • [37] Overexpression of a NAC transcription factor enhances rice drought and salt tolerance
    Zheng, Xingnan
    Chen, Bo
    Lu, Guojun
    Han, Bin
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2009, 379 (04) : 985 - 989
  • [38] Ectopic expression of a rice transcription factor, Mybleu, enhances tolerance of transgenic plants of Carrizo citrange to low oxygen stress
    Paola Caruso
    Elena Baldoni
    Monica Mattana
    Donata Pietro Paolo
    Annamaria Genga
    Immacolata Coraggio
    Giuseppe Russo
    Valentina Picchi
    Giuseppe Reforgiato Recupero
    Franca Locatelli
    Plant Cell, Tissue and Organ Culture (PCTOC), 2012, 109 : 327 - 339
  • [39] Ectopic expression of a rice transcription factor, Mybleu, enhances tolerance of transgenic plants of Carrizo citrange to low oxygen stress
    Caruso, Paola
    Baldoni, Elena
    Mattana, Monica
    Paolo, Donata Pietro
    Genga, Annamaria
    Coraggio, Immacolata
    Russo, Giuseppe
    Picchi, Valentina
    Recupero, Giuseppe Reforgiato
    Locatelli, Franca
    PLANT CELL TISSUE AND ORGAN CULTURE, 2012, 109 (02) : 327 - 339
  • [40] Expression of the Sweet Potato MYB Transcription Factor IbMYB48 Confers Salt and Drought Tolerance in Arabidopsis
    Zhao, Hongyuan
    Zhao, Haoqiang
    Hu, Yuanfeng
    Zhang, Shanshan
    He, Shaozhen
    Zhang, Huan
    Zhao, Ning
    Liu, Qingchang
    Gao, Shaopei
    Zhai, Hong
    GENES, 2022, 13 (10)