On-line learning methods for Gaussian processes

被引:0
|
作者
Oba, S [1 ]
Sato, M
Ishii, S
机构
[1] Nara Inst Sci & Technol, Takayama, Ikoma 89165, Japan
[2] ATR Int, Kyoto, Japan
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This article proposes two modifications of Gaussian processes, which aim to deal with dynamic environments. One is a weight decay method that gradually forgets the old data, and the other is a time stamp method that regards the time course of data as a Gaussian process. We show experimental results when these modifications are applied to regression problems in dynamic environments.
引用
收藏
页码:292 / 299
页数:8
相关论文
共 50 条
  • [21] Assessing on-line learning
    Chronicle of Higher Education, 45 (48):
  • [22] The on-line learning handbook
    Deeson, E
    BRITISH JOURNAL OF EDUCATIONAL TECHNOLOGY, 2002, 33 (01) : 113 - 114
  • [23] On-line Assessment of Comprehension Processes
    Martinez, Tomas
    Vidal-Abarca, Eduardo
    Gil, Laura
    Gilabert, Ramiro
    SPANISH JOURNAL OF PSYCHOLOGY, 2009, 12 (01): : 308 - 319
  • [24] On-line monitoring of factory processes
    Morgenroth, B.
    Pfau, S.
    Weiss, L. Warner
    INTERNATIONAL SUGAR JOURNAL, 2010, 112 (1338): : 342 - 347
  • [25] On-line Gibbs learning
    Kim, JW
    Sompolinsky, H
    PHYSICAL REVIEW LETTERS, 1996, 76 (16) : 3021 - 3024
  • [26] Teaching and learning on-line
    Richardson, C
    BRITISH JOURNAL OF EDUCATIONAL TECHNOLOGY, 2002, 33 (03) : 356 - 357
  • [27] On-line monitoring of batch processes using Kalman filter and multivariate statistical methods
    Di, Liqing
    Xiong, Zhihua
    Cao, Yujin
    Yang, Xianhui
    WCICA 2006: SIXTH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION, VOLS 1-12, CONFERENCE PROCEEDINGS, 2006, : 5511 - +
  • [28] An on-line learning algorithm for recurrent neural networks using variational methods
    Oh, WG
    Suh, BS
    40TH MIDWEST SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOLS 1 AND 2, 1998, : 659 - 662
  • [29] Non-invasive spectroscopic on-line methods to monitor industrial processes -: A review
    Brooker, MH
    Berg, RW
    GREEN INDUSTRIAL APPLICATIONS OF IONIC LIQUIDS, 2003, 92 : 227 - 251
  • [30] Exploratory Policy Generation Methods in On-line Deep Reinforcement Learning: A Survey
    Li, Shilei
    Ye, Qing
    Yuan, Zhimin
    Chen, Yun
    He, Tao
    Fu, Yu
    Jiqiren/Robot, 2024, 46 (06): : 753 - 768