Global existence of weak solution for the compressible Navier-Stokes-Poisson system for gaseous stars

被引:14
|
作者
Duan, Qin [1 ]
Li, Hai-Liang [2 ]
机构
[1] Shenzhen Univ, Coll Math & Computat Sci, Shenzhen, Peoples R China
[2] Capital Normal Univ, Dept Math, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
SPHERICALLY SYMMETRIC-SOLUTIONS; BOUNDARY VALUE-PROBLEMS; SHALLOW-WATER; INTERFACE BEHAVIOR; SMOOTH SOLUTIONS; VISCOUS-FLUID; EQUATIONS; FLOWS; TIME; STABILITY;
D O I
10.1016/j.jde.2015.06.029
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the multi-dimensional compressible Navier Stokes Poisson system with y-law pressure and density-dependent viscosity coefficients in the simulation of the motion of gaseous stars. The global existence of spherically symmetric weak solutions to the free boundary value problem for the Navier Stokes Poisson system for y is an element of (6/5, 4/3) is shown for arbitrarily large initial data with compact support. (C) 2015 Elsevier Inc. All rights
引用
收藏
页码:5302 / 5330
页数:29
相关论文
共 50 条
  • [31] On the global well-posedness for a multi-dimensional compressible Navier-Stokes-Poisson system
    Dong, Junting
    Wang, Zheng
    Xu, Fuyi
    APPLIED MATHEMATICS LETTERS, 2023, 142
  • [32] Global well-posedness of compressible bipolar Navier-Stokes-Poisson equations
    Lin, Yi Quan
    Hao, Cheng Chun
    Li, Hai Liang
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2012, 28 (05) : 925 - 940
  • [33] Asymptotic behavior of the compressible navier-stokes-poisson equations
    Wang, Shu
    Zhang, Li-Li
    Beijing Gongye Daxue Xuebao/Journal of Beijing University of Technology, 2010, 36 (06): : 850 - 858
  • [34] Global well-posedness of compressible bipolar Navier-Stokes-Poisson equations
    Yi Quan Lin
    Cheng Chun Hao
    Hai Liang Li
    Acta Mathematica Sinica, English Series, 2012, 28 : 925 - 940
  • [35] Global Well-posedness of Compressible Bipolar Navier-Stokes-Poisson Equations
    Yi Quan LIN
    Cheng Chun HAO
    Hai Liang LI
    Acta Mathematica Sinica,English Series, 2012, (05) : 925 - 940
  • [36] Global Well-posedness of Compressible Bipolar Navier-Stokes-Poisson Equations
    Yi Quan LIN
    Cheng Chun HAO
    Hai Liang LI
    ActaMathematicaSinica, 2012, 28 (05) : 925 - 940
  • [37] Global existence and time decay rates for the 3D bipolar compressible Navier-Stokes-Poisson system with unequal viscosities
    Wu, Guochun
    Zhang, Yinghui
    Zhang, Anzhen
    SCIENCE CHINA-MATHEMATICS, 2022, 65 (04) : 731 - 752
  • [38] Global existence and time decay rates for the 3D bipolar compressible Navier-Stokes-Poisson system with unequal viscosities
    Guochun Wu
    Yinghui Zhang
    Anzhen Zhang
    Science China Mathematics, 2022, 65 : 731 - 752
  • [39] Blow-Up of Smooth Solution to the Compressible Navier-Stokes-Poisson Equations
    Tang, Tong
    Zhang, Zujin
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2016, 39 (04) : 1487 - 1497
  • [40] On the existence of solutions to the Navier-Stokes-Poisson equations of a two-dimensional compressible flow
    Zhang, Yinghui
    Tan, Zhong
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2007, 30 (03) : 305 - 329