Improved parameter estimation for hydrological models using weighted object functions

被引:0
|
作者
Stein, A [1 ]
Zaadnoordijk, WJ [1 ]
机构
[1] Agr Univ Wageningen, Dept Environm Sci, NL-6700 AA Wageningen, Netherlands
关键词
model calibration; geostatistics; recharge; resistance; sensitivity analysis; Isle of Goeree;
D O I
10.1002/(SICI)1099-1085(19990630)13:9<1315::AID-HYP817>3.0.CO;2-C
中图分类号
TV21 [水资源调查与水利规划];
学科分类号
081501 ;
摘要
This paper discusses the sensitivity of calibration of hydrological model parameters to different objective functions. Several functions are defined with weights depending upon the hydrological background. These are compared with an objective function based upon kriging, Calibration is applied to piezometric readings from the Isle of Goeree in the Netherlands. For a study on the permeability of the first aquifer, the kriging predictor yields weights that differ from using prior knowledge, and emphasizes more strongly spatially isolated points than commonly applied objective functions. It reduces the range of differences between measurements and model simulations, but the mean absolute error increases. For a study on the resistance of the top layer and of the aquitard, use of prior information in the objective functions leads to a reduction in standard deviations of the differences between measured and calculated values by 40-80%, Copyright (C) 1999 John Wiley & Sons, Ltd.
引用
收藏
页码:1315 / 1328
页数:14
相关论文
共 50 条
  • [31] Development of the consider cubature Kalman filter for state estimation of hydrological models with parameter uncertainty
    Sun, Y.
    Bao, W.
    Qu, S.
    Li, Q.
    Jiang, P.
    Zhou, Z.
    Shi, P.
    JOURNAL OF HYDROLOGY, 2023, 625
  • [32] Physical Constraints for Improved Soil Hydraulic Parameter Estimation by Pedotransfer Functions
    Lehmann, Peter
    Bickel, Samuel
    Wei, Zhongwang
    Or, Dani
    WATER RESOURCES RESEARCH, 2020, 56 (04)
  • [33] Estimation of Object Functions Using Deformable Part Model
    Kitano, Yosuke
    Takiguchi, Tetsuya
    Ariki, Yasuo
    2015 21ST KOREA-JAPAN JOINT WORKSHOP ON FRONTIERS OF COMPUTER VISION, 2015,
  • [34] IMPROVED PARAMETER ESTIMATION
    BOX, MJ
    TECHNOMETRICS, 1970, 12 (02) : 219 - &
  • [35] Fast parameter estimation using Green's functions
    Wong, KYM
    Li, FL
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 14, VOLS 1 AND 2, 2002, 14 : 535 - 542
  • [36] Bayesian Parameter Estimation Using Periodic Cost Functions
    Routtenberg, Tirza
    Tabrikian, Joseph
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2012, 60 (03) : 1229 - 1240
  • [37] Toward improved parameter estimation of land surface hydrology models through the Model Parameter Estimation Experiment (MOPEX)
    Schaake, J
    Duan, QY
    Koren, V
    Hall, A
    SOIL-VEGETATION-ATMOSPHERE TRANSFER SCHEMES AND LARGE-SCALE HYDROLOGICAL MODELS, 2001, (270): : 91 - 97
  • [38] Comparison of parameter estimation algorithms in hydrological modelling
    Blasone, R. S.
    Madsen, H.
    Rosbjerg, D.
    CALIBRATION AND RELIABILITY IN GROUNDWATER MODELLING: FROM UNCERTAINTY TO DECISION MAKING, 2006, 304 : 67 - +
  • [39] Channel Estimation Using Weighted Switching of Multiple Models
    Yang, Ruizhe
    Si, Pengbo
    Zhang, Lin
    Yang, Xuyue
    Zhang, Yanhua
    PROCEEDINGS OF THE 2015 10TH INTERNATIONAL CONFERENCE ON COMMUNICATIONS AND NETWORKING IN CHINA CHINACOM 2015, 2015, : 232 - 237
  • [40] Parameter estimation and uncertainty analysis in hydrological modeling
    Herrera, Paulo A.
    Marazuela, Miguel Angel
    Hofmann, Thilo
    WILEY INTERDISCIPLINARY REVIEWS-WATER, 2022, 9 (01):