The Hopf bifurcation in the Kaldor-Kalecki model

被引:0
|
作者
Szydlowski, M [1 ]
Krawiec, A [1 ]
机构
[1] Jagiellonian Univ, Astron Observ, PL-30244 Krakow, Poland
关键词
business cycle; limit cycles; functional differential equations;
D O I
暂无
中图分类号
N09 [自然科学史]; B [哲学、宗教];
学科分类号
01 ; 0101 ; 010108 ; 060207 ; 060305 ; 0712 ;
摘要
By using the theory of dynamical systems and especially the theory of Hopf bifurcations the existence of limit cycles in the Kaldor-Kalecki model is discussed. This model is a modified version of the 1940 Kaldor model of business cycle with introduced the time-to-build parameter in investment function in the Kalecki way. In this paper the model is investigated in an approximation of a small lag. It is shown that such a model can be reduced to the Lienard equation which has a bifurcation value of lag parameter. From the Hopf theorem the sufficient conditions for generation of the limit cycle on the phase space are obtained. It is demonstrated how the amplitude of oscillation depends on the value of a lag parameter. Copyright (C) 1998 IFAC.
引用
收藏
页码:391 / 396
页数:6
相关论文
共 50 条
  • [31] The Kaldor‐Kalecki business cycle model
    A. Krawiec
    M. Szydlowski
    Annals of Operations Research, 1999, 89 : 89 - 100
  • [32] Semi-Analytical Solutions for the Diffusive Kaldor-Kalecki Business Cycle Model with a Time Delay for Gross Product and Capital Stock
    Alfifi, H. Y.
    COMPLEXITY, 2021, 2021
  • [33] 基于混合型泛函微分方程的Kaldor-Kalecki模型
    刘澄
    刘祥东
    孙彬
    系统工程学报, 2011, (06) : 738 - 745
  • [34] Extended Kalecki-Kaldor Model Revisited
    Kodera, Jan
    Sladky, Karel
    Vosvrda, Miloslav
    PROCEEDINGS OF THE 21ST INTERNATIONAL CONFERENCE MATHEMATICAL METHODS IN ECONOMICS 2003, 2003, : 160 - 165
  • [35] A Kaldor-Hicks-Goodwin-Tobin-Kalecki model of growth and distribution
    Palley, Thomas I.
    METROECONOMICA, 2013, 64 (02) : 319 - 345
  • [36] The Kaldor–Kalecki Model of Business Cycle as a Two-Dimensional Dynamical System
    Marek Szydłowski
    Adam Krawiec
    Journal of Nonlinear Mathematical Physics, 2001, 8 : 266 - 271
  • [37] A model for the nonautonomous Hopf bifurcation
    Anagnostopoulou, V.
    Jaeger, T.
    Keller, G.
    NONLINEARITY, 2015, 28 (07) : 2587 - 2616
  • [38] Hopf bifurcation of a chemostat model
    Qu, Rongning
    Li, Xiaofang
    APPLIED MATHEMATICS AND COMPUTATION, 2012, 219 (08) : 3541 - 3552
  • [39] WAGE POLICY IN AN OPEN-ECONOMY KALECKI-KALDOR MODEL: A SIMULATION STUDY
    von Arnim, Rudiger
    METROECONOMICA, 2011, 62 (02) : 235 - 264
  • [40] Hopf bifurcation of cortical column model
    Li, Chun-Sheng
    Wang, Hong
    Zhang, Xue
    Zhao, Hai-Bin
    Dongbei Daxue Xuebao/Journal of Northeastern University, 2010, 31 (04): : 490 - 493