Large eddy simulation of premixed hydrogen/methane/air flame propagation in a closed duct

被引:66
|
作者
Zheng, Kai [1 ]
Yu, Minggao [1 ,2 ]
Liang, Yunpei [1 ]
Zheng, Ligang [2 ]
Wen, Xiaoping [3 ]
机构
[1] Chongqing Univ, State Key Lab Coal Mine Disaster Dynam & Control, Chongqing 400044, Peoples R China
[2] Henan Polytech Univ, Sch Safety Sci & Engn, Jiaozuo 454003, Peoples R China
[3] Henan Polytech Univ, Sch Mech & Power Engn, Jiaozuo 454003, Peoples R China
基金
中国国家自然科学基金;
关键词
Hydrogen/methane; Premixed flame; Large eddy simulation; Tulip flame; HYDROGEN-AIR; TURBULENT COMBUSTION; WRINKLING MODEL; TULIP FLAME; LES; DEFLAGRATION; OBSTACLES; FRONT; SHAPE; FLOW;
D O I
10.1016/j.ijhydene.2018.01.045
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this paper, large eddy simulation (LES) is performed to investigate the propagation characteristics of premixed hydrogen/methane/air flames in a closed duct. In LES, three stoichiometric hydrogen/methane/air mixtures with hydrogen fractions (volume fractions) of 0, 50% and 100% are used. The numerical results have been verified by comparison with experimental data. All stages of flame propagation that occurred in the experiment are reproduced qualitatively in LES. For fuel/air mixtures with hydrogen fractions of 0 and 50%, only four stages of "tulip" flame formation are observed, but when the hydrogen fraction is 100%, the distorted "tulip" flame appears after flame front inversion. In the acceleration stage, the LES and experimental flame speed and pressure dynamic coincide with each other, except for a hydrogen fraction of 0. After "tulip" flame formation, all LES and experimental flame propagation speeds and pressure dynamics exhibit the same trends for hydrogen fractions of 0 and 100%. However, when the hydrogen fraction is 50%, a slight periodic oscillation appears only in the experiment. In general, the different structures displayed in the flame front during flame propagation can be attributed to the interaction between the flame front, the vortex and the reverse flow formed in the unburned and burned zones. (C) 2018 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:3871 / 3884
页数:14
相关论文
共 50 条
  • [41] Characterisation of non-premixed, swirl-stabilised, wet hydrogen/air flame using large eddy simulation
    Palulli, Rahul
    Dybe, Simeon
    Zhang, Kai
    Guthe, Felix
    Alemela, Panduranga Reddy
    Paschereit, Christian Oliver
    Duwig, Christophe
    FUEL, 2023, 350
  • [42] Experimental study on the competing effect of ceramic pellets on premixed methane-air flame propagation in a duct
    Chen, Jiayan
    Jin, Kaiqiang
    Duan, Qiangling
    Li, Ping
    Sun, Jinhua
    JOURNAL OF LOSS PREVENTION IN THE PROCESS INDUSTRIES, 2021, 72
  • [43] Scale effects on premixed flame propagation of hydrogen/methane deflagration
    Yu, Minggao
    Zheng, Kai
    Zheng, Ligang
    Chu, Tingxiang
    Guo, Pinkun
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2015, 40 (38) : 13121 - 13133
  • [44] Using Large Eddy Simulation to understand non-premixed flame propagation in wind tunnel
    Wang, HY
    Joulain, P
    Torero, J
    ENERGY CONVERSION AND APPLICATION, VOL I AND II, 2001, : 673 - 679
  • [45] Experimental study on the influence of multi-layer wire mesh on dynamics of premixed hydrogen-air flame propagation in a closed duct
    Jin, Kaiqiang
    Duan, Qiangling
    Chen, Jiayan
    Liew, K. M.
    Gong, Liang
    Sun, Jinhua
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (21) : 14809 - 14820
  • [46] Effect of Obstacle Type on Methane-Air Flame Propagation in a Closed Duct: An Experimental Study
    Kolahdooz, H.
    Nazari, M.
    Kayhani, M. H.
    Ebrahimi, R.
    Askari, O.
    JOURNAL OF ENERGY RESOURCES TECHNOLOGY-TRANSACTIONS OF THE ASME, 2019, 141 (11):
  • [47] Experimental study of hydrogen/air premixed flame propagation in a closed channel with inhibitions for safety consideration
    Zhang, Chao
    Wen, Jennifer
    Shen, Xiaobo
    Xiu, Guangli
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (40) : 22654 - 22660
  • [48] Flame and eddy structures in hydrogen-air turbulent jet premixed flame
    Shimura, M.
    Yamawaki, K.
    Fukushima, N.
    Shim, Y. S.
    Nada, Y.
    Tanahashi, M.
    Miyauchi, T.
    JOURNAL OF TURBULENCE, 2012, 13 (42): : 1 - 17
  • [49] Effects of obstacle on premixed flame microstructure and flame propagation in methane/air explosion
    Yang, Y
    Zhu, HQ
    Liu, JZ
    THEORY AND PRACTICE OF ENERGETIC MATERIALS, VOL 5, PARTS A AND B, 2003, : 587 - 592
  • [50] Experimental study of premixed syngas/air flame deflagration in a closed duct
    Yu, Minggao
    Yang, Xufeng
    Zheng, Kai
    Zheng, Ligang
    Wen, Xiaoping
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2018, 43 (29) : 13676 - 13686