Nonperturbative dynamical decoupling control: A spin-chain model

被引:11
|
作者
Wang, Zhao-Ming [1 ,2 ,3 ]
Wu, Lian-Ao [2 ,3 ]
Jing, Jun [4 ,5 ]
Shao, Bin [6 ,7 ]
Yu, Ting [4 ,5 ]
机构
[1] Ocean Univ China, Dept Phys, Qingdao 266100, Peoples R China
[2] Basque Fdn Sci, IKERBASQUE, Bilbao 48011, Spain
[3] Univ Basque Country, Dept Theoret Phys & Hist Sci, EHU UPV, Bilbao 48011, Spain
[4] Stevens Inst Technol, Dept Phys & Engn Phys, Hoboken, NJ 07030 USA
[5] Stevens Inst Technol, Ctr Controlled Quantum Syst, Hoboken, NJ 07030 USA
[6] Beijing Inst Technol, Sch Phys, Beijing 10081, Peoples R China
[7] Minist Educ, Key Lab Cluster Sci, Beijing 10081, Peoples R China
基金
美国国家科学基金会;
关键词
QUANTUM ERROR-CORRECTION; DECOHERENCE;
D O I
10.1103/PhysRevA.86.032303
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
This paper considers a spin-chain model by numerically solving the exact model to explore the nonperturbative dynamical decoupling regime, where an important issue recently arose. Our study has revealed a few universal features of nonperturbative dynamical control irrespective of the types of environments and system-environment couplings. We have shown that, for the spin-chain model, there is a threshold and a large pulse parameter region where the effective dynamical control can be implemented, in contrast to the perturbative decoupling schemes where the permissible parameters are represented by a point or converge to a very small subset in the large parameter region admitted by our nonperturbative approach. An important implication of the nonperturbative approach is its flexibility in implementing the dynamical control scheme in an experimental setup. Our findings have exhibited several interesting features of the nonperturbative regimes such as the chain-size independence, pulse strength upper bound, noncontinuous valid parameter regions, etc. Furthermore, we find that our nonperturbative scheme is robust against randomness in model fabrication and time-dependent random noise.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Geometric phases and criticality in spin-chain systems
    Carollo, ACM
    Pachos, JK
    PHYSICAL REVIEW LETTERS, 2005, 95 (15)
  • [22] Spin dynamics of the spin-chain antiferromagnet RbFeS2
    Li, Lisi
    Zheng, Liangliang
    Frandsen, Benjamin A.
    Christianson, Andrew D.
    Yao, Dao-Xin
    Wang, Meng
    Birgeneau, Robert J.
    PHYSICAL REVIEW B, 2021, 104 (22)
  • [23] Giant caloric effects in spin-chain materials
    Zvyagin, A. A.
    Slavin, V. V.
    PHYSICAL REVIEW B, 2024, 109 (21)
  • [24] Heat transport in real spin-chain materials
    Chernyshev, A. L.
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2007, 310 (02) : 1263 - 1265
  • [25] Adiabatic dynamical-decoupling-based control of nuclear spin registers
    Whaites, O. T.
    Randall, J.
    Taminiau, T. H.
    Monteiro, T. S.
    PHYSICAL REVIEW RESEARCH, 2022, 4 (01):
  • [26] Thermal transport in antiferromagnetic spin-chain materials
    Chernyshev, AL
    Rozhkov, AV
    PHYSICAL REVIEW B, 2005, 72 (10)
  • [27] Dynamical decoupling of qubits in a spin bath under periodic quantum control
    Kao, Jun-Ting
    Hung, Jo-Tzu
    Chen, Pochung
    Mou, Chung-Yu
    PHYSICAL REVIEW A, 2010, 82 (06):
  • [28] Structural aspects of spin-chain and spin-ladder oxides
    van Smaalen, S
    ZEITSCHRIFT FUR KRISTALLOGRAPHIE, 1999, 214 (12): : 786 - 802
  • [29] Entanglement evolution of a spin-chain bath coupled to a quantum spin
    Wang, Zhi-Hui
    Wang, Bing-Shen
    Su, Zhao-Bin
    PHYSICAL REVIEW B, 2009, 79 (10)
  • [30] Negativity as the entanglement measure to probe the Kondo regime in the spin-chain Kondo model
    Bayat, Abolfazl
    Sodano, Pasquale
    Bose, Sougato
    PHYSICAL REVIEW B, 2010, 81 (06)