ROBUST AUXILIARY PARTICLE FILTERS USING MULTIPLE IMPORTANCE SAMPLING

被引:0
|
作者
Kronander, Joel [1 ]
Schon, Thomas B. [2 ]
机构
[1] Linkoping Univ, Dept Sci & Technol, S-58183 Linkoping, Sweden
[2] Uppsala Univ, Dept Informat Technol, Uppsala, Sweden
关键词
Sequential Monte Carlo; particle filter; mixture sampling; multiple importance sampling;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A poor choice of importance density can have detrimental effect on the efficiency of a particle filter. While a specific choice of proposal distribution might be close to optimal for certain models, it might fail miserably for other models, possibly even leading to infinite variance. In this paper we show how mixture sampling techniques can be used to derive robust and efficient particle filters, that in general performs on par with, or better than, the best of the standard importance densities. We derive several variants of the auxiliary particle filter using both random and deterministic mixture sampling via multiple importance sampling. The resulting robust particle filters are easy to implement and require little parameter tuning.
引用
收藏
页码:268 / 271
页数:4
相关论文
共 50 条
  • [41] Generalized Multiple Importance Sampling
    Elvira, Victor
    Martino, Luca
    Luengo, David
    Bugallo, Monica F.
    STATISTICAL SCIENCE, 2019, 34 (01) : 129 - 155
  • [42] Marginal Multiple Importance Sampling
    West, Rex
    Georgiev, Iliyan
    Hachisuka, Toshiya
    PROCEEDINGS SIGGRAPH ASIA 2022, 2022,
  • [43] Multiple Importance Sampling for PET
    Szirmay-Kalos, Laszlo
    Magdics, Milan
    Toth, Balazs
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2014, 33 (04) : 970 - 978
  • [44] Continuous Multiple Importance Sampling
    West, Rex
    Georgiev, Iliyan
    Gruson, Adrien
    Hachisuka, Toshiya
    ACM TRANSACTIONS ON GRAPHICS, 2020, 39 (04):
  • [45] Adaptive Importance Sampling in Particle Filtering
    Smidl, Vaclav
    Hofman, Radek
    2013 16TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2013, : 9 - 16
  • [46] ADAPTIVE PARTICLE SAMPLING AND RESAMPLING IN PARALLEL/DISTRIBUTED PARTICLE FILTERS
    Zhang, Xudong
    Gu, Feng
    2019 SPRING SIMULATION CONFERENCE (SPRINGSIM), 2019,
  • [47] Image Reconstruction Using Particle Filters and Multiple Hypotheses Testing
    Azzabou, Noura
    Paragios, Nikos
    Guichard, Frederic
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2010, 19 (05) : 1181 - 1190
  • [48] Particle Filter with LMMSE Importance Sampling
    Pogorelsky, Bryan
    Michaelson, Kristen
    Zanetti, Renato
    2022 25TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION 2022), 2022,
  • [49] Scheduling multiple sensors using particle filters in target tracking
    Chhetri, AS
    Morrell, D
    Papandreou-Suppappola, A
    PROCEEDINGS OF THE 2003 IEEE WORKSHOP ON STATISTICAL SIGNAL PROCESSING, 2003, : 549 - 552
  • [50] Conditional Particle Filters with Bridge Backward Sampling
    Karppinen, Santeri
    Singh, Sumeetpal S. S.
    Vihola, Matti
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2024, 33 (02) : 364 - 378