ROBUST AUXILIARY PARTICLE FILTERS USING MULTIPLE IMPORTANCE SAMPLING

被引:0
|
作者
Kronander, Joel [1 ]
Schon, Thomas B. [2 ]
机构
[1] Linkoping Univ, Dept Sci & Technol, S-58183 Linkoping, Sweden
[2] Uppsala Univ, Dept Informat Technol, Uppsala, Sweden
关键词
Sequential Monte Carlo; particle filter; mixture sampling; multiple importance sampling;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A poor choice of importance density can have detrimental effect on the efficiency of a particle filter. While a specific choice of proposal distribution might be close to optimal for certain models, it might fail miserably for other models, possibly even leading to infinite variance. In this paper we show how mixture sampling techniques can be used to derive robust and efficient particle filters, that in general performs on par with, or better than, the best of the standard importance densities. We derive several variants of the auxiliary particle filter using both random and deterministic mixture sampling via multiple importance sampling. The resulting robust particle filters are easy to implement and require little parameter tuning.
引用
收藏
页码:268 / 271
页数:4
相关论文
共 50 条
  • [1] Elucidating the Auxiliary Particle Filter via Multiple Importance Sampling
    Elvira, Victor
    Martino, Luca
    Bugallo, Monica F.
    Djuric, Petar M.
    IEEE SIGNAL PROCESSING MAGAZINE, 2019, 36 (06) : 145 - 152
  • [2] Road tracking using particle filters with partition sampling and auxiliary variables
    Bai, Li
    Wang, Yan
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2011, 115 (10) : 1463 - 1471
  • [3] Conditional importance sampling for particle filters
    Zhang, Qingming
    Shi, Buhai
    Zhang, Yuhao
    INFORMATION SCIENCES, 2019, 501 : 388 - 396
  • [4] Robust Real-Time Visual Tracking by Using Particle Filter with Sampling Multiple Importance Reasampling
    Huang, Cheng-Ming
    Jiang, Bo-Wei
    2017 56TH ANNUAL CONFERENCE OF THE SOCIETY OF INSTRUMENT AND CONTROL ENGINEERS OF JAPAN (SICE), 2017, : 1050 - 1051
  • [5] Representativity for Robust and Adaptive Multiple Importance Sampling
    Pajot, Anthony
    Barthe, Loic
    Paulin, Mathias
    Poulin, Pierre
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2011, 17 (08) : 1108 - 1121
  • [6] Robust Multiple Importance Sampling with Tsallis φ-Divergences
    Sbert, Mateu
    Szirmay-Kalos, Laszlo
    ENTROPY, 2022, 24 (09)
  • [7] Enhanced importance sampling: Unscented auxiliary particle filtering for visual tracking
    Shen, CH
    van den Hengel, A
    Dick, A
    Brooks, MJ
    AI 2004: ADVANCES IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2004, 3339 : 180 - 191
  • [8] DISTRIBUTED AUXILIARY PARTICLE FILTERS USING SELECTIVE GOSSIP
    Uestebay, Deniz
    Coates, Mark
    Rabbat, Michael
    2011 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2011, : 3296 - 3299
  • [9] A note on auxiliary particle filters
    Johansen, Adam M.
    Doucet, Arnaud
    STATISTICS & PROBABILITY LETTERS, 2008, 78 (12) : 1498 - 1504
  • [10] Implementation of the Auxiliary Sampling Importance Resampling Particle Filter on Graphics Processing Unit
    Dulger, Ozcan
    Oguztuzun, Halit
    2020 5TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND ENGINEERING (UBMK), 2020, : 156 - 159