Shrinkage estimation for the regression parameter matrix in multivariate regression model

被引:3
|
作者
Chitsaz, Shabnam [1 ]
Ahmed, S. Ejaz [1 ]
机构
[1] Univ Windsor, Windsor, ON N9B 3P4, Canada
关键词
linear regression; shrinkage; INFERENCE;
D O I
10.1080/00949655.2011.648938
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, we consider optimal shrinkage estimation strategies for the regression parameter matrix in multivariate multiple regression models. It uses the context of two competing models, where one model includes all predictors and the other restricts variable coefficients to a candidate linear subspace based on prior information. In this scenario, we suggest a shrinkage estimation strategy for the targeted regression parameter matrix. The goal of this paper is to critically examine the relative performances of the shrinkage estimators in the direction of the subspace and candidate subspace restricted-type estimators. We derive expression for bias and quadratic risk of the suggested estimators. Furthermore, we appraise the relative performance of the suggested estimators with the classical estimators. Our analytical and numerical results show that the proposed shrinkage estimators overall perform the best. The methods are also applied on a real data set for illustrative purposes.
引用
收藏
页码:309 / 323
页数:15
相关论文
共 50 条
  • [41] A BRIEF REVIEW OF SHRINKAGE ESTIMATION OF A MULTIVARIATE NORMAL MEAN WITH EXTENSION TO MULTIPLE LINEAR REGRESSION
    Lin, Jyh-Jiuan
    Chang, Ching-Hui
    Pal, Nabendu
    ADVANCES AND APPLICATIONS IN STATISTICS, 2005, 5 (03) : 371 - 399
  • [42] Reduced rank regression with matrix projections for high-dimensional multivariate linear regression model
    Guo, Wenxing
    Balakrishnan, Narayanaswamy
    Bian, Mengjie
    ELECTRONIC JOURNAL OF STATISTICS, 2021, 15 (02): : 4167 - 4191
  • [43] Testimation in Regression Parameter Estimation
    Department of Statistics, University of Clifornia, Riverside, CA, United States
    不详
    Biom. J., 7 (809-817):
  • [44] Testimation in regression parameter estimation
    Rahman, M
    Gokhale, DV
    BIOMETRICAL JOURNAL, 1996, 38 (07) : 809 - 817
  • [45] TESTING FOR A CHANGE IN THE REGRESSION MATRIX OF A MULTIVARIATE LINEAR-MODEL
    MOEN, DH
    BROEMELING, LD
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1984, 13 (12) : 1521 - 1531
  • [46] Double smoothing estimation of the multivariate regression function in nonparametric regression
    Hwang, RC
    Ken, ML
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2002, 31 (03) : 419 - 434
  • [47] Criterion-robust optimal designs for model discrimination and parameter estimation: Multivariate polynomial regression case
    Tsai, MH
    Zen, MM
    STATISTICA SINICA, 2004, 14 (02) : 591 - 601
  • [48] Multivariate Generalized Poisson Regression Model With Exposure and Correlation as a Function of Covariates: Parameter Estimation and Hypothesis Testing
    Berliana, Sarni Maniar
    Purhadi
    Sutikno
    Rahayu, Santi Puteri
    PROCEEDINGS OF THE 8TH SEAMS-UGM INTERNATIONAL CONFERENCE ON MATHEMATICS AND ITS APPLICATIONS 2019: DEEPENING MATHEMATICAL CONCEPTS FOR WIDER APPLICATION THROUGH MULTIDISCIPLINARY RESEARCH AND INDUSTRIES COLLABORATIONS, 2019, 2192
  • [49] Multivariate regression shrinkage and selection by canonical correlation analysis
    An, Baiguo
    Guo, Jianhua
    Wang, Hansheng
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2013, 62 : 93 - 107
  • [50] Penalized maximum likelihood estimation of a stochastic multivariate regression model
    Hansen, Elizabeth
    Chan, Kung-Sik
    STATISTICS & PROBABILITY LETTERS, 2010, 80 (21-22) : 1643 - 1649