Medical Disease Prediction Using Artificial Neural Networks

被引:0
|
作者
Mantzaris, Dimitrios H. [1 ]
Anastassopoulos, George C. [1 ]
Lymberopoulos, Dimitrios K. [2 ]
机构
[1] Democritus Univ Thrace, Med Informat Lab, GR-68100 Alexandroupolis, Greece
[2] Univ Patras, Dept Elect & Comp Engn, Patras GR 26504, Greece
关键词
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
This study examines a variety of Artificial Neural Network (ANN) models in terms of their classification efficiency in an orthopedic disease, namely osteoporosis. Osteoporosis risk prediction may be viewed as a pattern classification problem, based on a set of clinical parameters. Multi-Layer Perceptrons (MLPs) and Probabilistic Neural Networks (PNNs) were used in order to face the osteoporosis risk factor prediction. This approach is the first computational intelligence technique based on ANNs for osteoporosis risk study on Greek population. MLPs and PNNs are both feed-forward networks; however, their modus operandi is different. Various MPL architectures were examined after modifying the number of nodes in the hidden layer, the transfer functions and the learning algorithms. Moreover, PNNs were implemented with spread values ranging from 0.1 to 50, and 4 or 2 neurons in output layer, according to coding of osteoporosis desired outcome. The obtained results lead to the conclusion that the PNNs outperform to MLPs, thus they are proved as appropriate computation intelligence technique for osteoporosis risk factor prediction. Furthermore, the overfitting problem was more frequent to MLPs, contrary to PNNs as their spread value increased. The aim of proposed PNN is to assist specialists in osteoporosis prediction, avoiding unnecessary further testing with bone densitometry.
引用
收藏
页码:793 / +
页数:2
相关论文
共 50 条
  • [21] Prediction of wheat yield using artificial neural networks
    Safa, B
    Khalili, A
    Teshnehlab, M
    Liaghat, AM
    15TH CONFERENCE ON BIOMETEOROLOGY AND AEROBIOLOGY JOINT WITH THE 16TH INTERNATIONAL CONGRESS ON BIOMETEOROLOGY, 2002, : 350 - 351
  • [22] Soil salinity prediction using artificial neural networks
    Patel, RM
    Prasher, SO
    Goel, PK
    Bassi, R
    JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, 2002, 38 (01): : 91 - 100
  • [23] Prediction of slump in concrete using artificial neural networks
    Agrawal, V.
    Sharma, A.
    World Academy of Science, Engineering and Technology, 2010, 69 : 25 - 32
  • [24] STOCK MARKET PREDICTION USING ARTIFICIAL NEURAL NETWORKS
    Bharne, Pankaj K.
    Prabhune, Sameer S.
    PROCEEDINGS OF THE 2019 INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND CONTROL SYSTEMS (ICCS), 2019, : 64 - 68
  • [25] Prediction of lake eutrophication using artificial neural networks
    Huo, Shouliang
    He, Zhuoshi
    Su, Jing
    Xi, Beidou
    Zhang, Lieyu
    Zan, Fengyu
    INTERNATIONAL JOURNAL OF ENVIRONMENT AND POLLUTION, 2015, 56 (1-4) : 63 - 78
  • [26] NFL Prediction using Committees of Artificial Neural Networks
    David, John A.
    Pasteur, R. Drew
    Ahmad, M. Saif
    Janning, Michael C.
    JOURNAL OF QUANTITATIVE ANALYSIS IN SPORTS, 2011, 7 (02)
  • [27] Prediction of Breast Cancer Using Artificial Neural Networks
    Ismail Saritas
    Journal of Medical Systems, 2012, 36 : 2901 - 2907
  • [28] Prediction of crossroad passing using artificial neural networks
    Civilis, Alminas
    2006 SEVENTH INTERNATIONAL BALTIC CONFERENCE ON DATABASES AND INFORMATION SYSTEMS - PROCEEDINGS, 2006, : 229 - 234
  • [29] Prediction of fingers posture using artificial neural networks
    Rezzoug, Nasser
    Gorce, Philippe
    JOURNAL OF BIOMECHANICS, 2008, 41 (12) : 2743 - 2749
  • [30] Prediction of hydrocyclone performance using artificial neural networks
    Karimi, M.
    Dehghani, A.
    Nezamalhosseini, A.
    Talebi, S.H.
    Journal of the Southern African Institute of Mining and Metallurgy, 2010, 110 (05) : 207 - 212