Accuracy improvement of depth estimation with tilted optics by optimizing neural network

被引:1
|
作者
Ikeoka, Hiroshi [1 ]
Hamamoto, Takayuki [2 ]
机构
[1] Fukuyama Univ, Dept Comp Sci, Hiroshima 7290292, Japan
[2] Tokyo Univ Sci, Dept Elect Engn, Tokyo 1258585, Japan
关键词
depth estimation; distance estimation; tilted optics; blur; defocus; neural network; deep learning;
D O I
10.1117/12.2521101
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We have been investigating a novel depth estimation system that adopts tilted-lens optics for real-time usage, e.g., automotive tasks. Herein, we obtained depth values for each pixel from the sharpness ratio of only two tilted optics images; we used a monocular camera system with a spectroscopic mirror. However, the method causes some estimation errors because of the difference between the optical theory and the actual camera system. Therefore, to reduce the error, we adopted a neural network to obtain the depth map. In this paper, we report our improvement by optimizing the neural network construction which calculates the depth value for each pixel from 3 x 3 pixel values at each image and y-coordinate.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Improvement of Plasma Sheet Neural Network Accuracy With Inclusion of Physical Information
    Swiger, Brian M.
    Liemohn, Michael W.
    Ganushkina, Natalia Y.
    FRONTIERS IN ASTRONOMY AND SPACE SCIENCES, 2020, 7
  • [22] Classification accuracy improvement of neural network classifiers by using unlabeled data
    Fardanesh, MT
    Ersoy, OK
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1998, 36 (03): : 1020 - 1025
  • [23] Improvement of Traction Force Estimation in Cornering through Neural Network
    Marotta, Raffaele
    Strano, Salvatore
    Terzo, Mario
    Tordela, Ciro
    SAE INTERNATIONAL JOURNAL OF CONNECTED AND AUTOMATED VEHICLES, 2024, 7 (02):
  • [24] An Improvement of Parameter Estimation Accuracy of Structural Equation Modeling using Hybridization of Artificial Neural Network in the Entrepreneurship Structural Model
    Devianto D.
    Wulandari F.
    Yanuar F.
    Rahmi I.
    Yollanda M.
    Applied Mathematics and Nonlinear Sciences, 2023, 8 (02) : 2279 - 2302
  • [25] GeoNet: Geometric Neural Network for Joint Depth and Surface Normal Estimation
    Qi, Xiaojuan
    Liao, Renjie
    Liu, Zhengzhe
    Urtasun, Raquel
    Jia, Jiaya
    2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 283 - 291
  • [26] MVDepthNet: Real-time Multiview Depth Estimation Neural Network
    Wang, Kaixuan
    Shen, Shaojie
    2018 INTERNATIONAL CONFERENCE ON 3D VISION (3DV), 2018, : 248 - 257
  • [27] Defect depth estimation in passive thermography using neural network paradigm
    Heriansyah, Rudi
    Abu-Bakar, S. A. R.
    PROCEEDINGS OF THE WSEAS INTERNATIONAL CONFERENCE ON CIRCUITS, SYSTEMS, ELECTRONICS, CONTROL & SIGNAL PROCESSING: SELECTED TOPICS ON CIRCUITS, SYSTEMS, ELECTRONICS, CONTROL & SIGNAL PROCESSING, 2007, : 421 - 425
  • [28] Energy-Constrained Deep Neural Network Compression for Depth Estimation
    Zeng, Xiangrong
    Zhang, Maojun
    Zhong, Zhiwei
    Liu, Yan
    ELECTRONICS, 2023, 12 (03)
  • [29] Neural Network Modeling for Estimation of Scour Depth Around Bridge Piers
    T. L. Lee
    D. S. Jeng
    G. H. Zhang
    J. H. Hong
    Journal of Hydrodynamics, 2007, 19 : 378 - 386
  • [30] NEURAL NETWORK MODELING FOR ESTIMATION OF SCOUR DEPTH AROUND BRIDGE PIERS
    LEE T. L.
    JENG D. S.
    Journal of Hydrodynamics, 2007, (03) : 378 - 386