STUDIES OF OPTIMAL MEMORY FOR DISCRETE-TIME FIR FILTERS IN STATE-SPACE

被引:0
|
作者
Ramirez-Echeverria, Felipe [1 ]
Sarr, Amadou [2 ]
Ibarra-Manzano, Oscar G. [1 ]
Shmaliy, Yuriy S. [1 ]
机构
[1] Univ Guanajuato, Dept Elect, Salamanca, Mexico
[2] McMaster Univ, Dept Math & Stat, Hamilton, ON L8S 4L8, Canada
来源
2012 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP (SSP) | 2012年
关键词
FIR filtering; optimal memory; unbiased Kalman-like filter; MODELS;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We address two efficient estimators of optimal memory for FIR filters in discrete-time state-space via the conditional mean square error and real measurement. In the latter case, the algorithm does not involve neither a reference nor the noise covariances, but requires a learning circle. Although a justification has been provided for the Kalman-like unbiased FIR filter, the estimators can be used universally. Testing by the two-state polynomial model has shown a very good correspondence with the predicted values.
引用
收藏
页码:349 / 352
页数:4
相关论文
共 50 条