Elastic net-based prediction of IFN-β treatment response of patients with multiple sclerosis using time series microarray gene expression profiles

被引:12
|
作者
Fukushima, Arika [1 ]
Sugimoto, Masahiro [2 ,3 ,4 ]
Hiwa, Satoru [1 ]
Hiroyasu, Tomoyuki [1 ]
机构
[1] Doshisha Univ, Grad Sch Life & Med Sci, Kyoto, Japan
[2] Tokyo Med Univ, Res & Dev Ctr Minimally Invas Therapies Hlth Prom, Shinjuku Ku, Tokyo 1608402, Japan
[3] Keio Univ, Inst Adv Biosci, Tsuruoka, Yamagata 9970052, Japan
[4] Univ Tsukuba, Res & Dev Ctr Precis Med, Tsukuba, Ibaraki 3058550, Japan
基金
日本学术振兴会;
关键词
INTERFERON-BETA; REGULARIZATION; REGRESSION; SELECTION; CELLS;
D O I
10.1038/s41598-018-38441-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
INF-beta has been widely used to treat patients with multiple sclerosis (MS) in relapse. Accurate prediction of treatment response is important for effective personalization of treatment. Microarray data have been frequently used to discover new genes and to predict treatment responses. However, conventional analytical methods suffer from three difficulties: high-dimensionality of datasets; high degree of multicollinearity; and achieving gene identification in time-course data. The use of Elastic net, a sparse modelling method, would decrease the first two issues; however, Elastic net is currently unable to solve these three issues simultaneously. Here, we improved Elastic net to accommodate time-course data analyses. Numerical experiments were conducted using two time-course microarray datasets derived from peripheral blood mononuclear cells collected from patients with MS. The proposed methods successfully identified genes showing a high predictive ability for INF-beta treatment response. Bootstrap sampling resulted in an 81% and 78% accuracy for each dataset, which was significantly higher than the 71% and 73% accuracy obtained using conventional methods. Our methods selected genes showing consistent differentiation throughout all time-courses. These genes are expected to provide new predictive biomarkers that can influence INF-beta treatment for MS patients.
引用
收藏
页数:11
相关论文
共 39 条
  • [21] IVIG treatment in patients with relapsing-remitting multiple sclerosis: New insights into gene expression profiles of peripheral T-cells
    Pigard, N.
    Kuusisto, H.
    Elovaara, I.
    Raija, P.
    Schwarz, H-P.
    Reipert, B.
    EUROPEAN JOURNAL OF NEUROLOGY, 2007, 14 : 276 - 276
  • [22] Effects of intravenous immunoglobulins treatment of patients with relapsing-remitting multiple sclerosis on gene expression profiles of their peripheral T-cells
    Pigard, N.
    Kuusisto, H.
    Elovaara, I.
    Paalavuo, R.
    Schwarz, H. P.
    Reipert, B.
    EUROPEAN JOURNAL OF NEUROLOGY, 2005, 12 : 273 - 273
  • [23] Gene expression profiles of peripheral T-cells in patients with relapsing-remitting multiple sclerosis after treatment with intravenous immunoglobulins
    Pigard, N.
    Kuusisto, H.
    Elovaara, I.
    Paalavuo, R.
    Zimmermann, K.
    Schwarz, H. P.
    Reipert, B.
    EUROPEAN JOURNAL OF NEUROLOGY, 2004, 11 : 293 - 293
  • [24] Survival prediction and treatment optimization of multiple myeloma patients using machine-learning models based on clinical and gene expression data
    Mosquera Orgueira, Adrian
    Gonzalez Perez, Marta Sonia
    Diaz Arias, Jose Angel
    Antelo Rodriguez, Beatriz
    Alonso Vence, Natalia
    Bendana Lopez, Angeles
    Abuin Blanco, Aitor
    Bao Perez, Laura
    Peleteiro Raindo, Andres
    Cid Lopez, Miguel
    Perez Encinas, Manuel Mateo
    Bello Lopez, Jose Luis
    Mateos Manteca, Maria Victoria
    LEUKEMIA, 2021, 35 (10) : 2924 - 2935
  • [25] Survival prediction and treatment optimization of multiple myeloma patients using machine-learning models based on clinical and gene expression data
    Adrián Mosquera Orgueira
    Marta Sonia González Pérez
    José Ángel Díaz Arias
    Beatriz Antelo Rodríguez
    Natalia Alonso Vence
    Ángeles Bendaña López
    Aitor Abuín Blanco
    Laura Bao Pérez
    Andrés Peleteiro Raíndo
    Miguel Cid López
    Manuel Mateo Pérez Encinas
    José Luis Bello López
    Maria Victoria Mateos Manteca
    Leukemia, 2021, 35 : 2924 - 2935
  • [26] Natalizumab Treatment Alters Cytokine Gene Expression in IFN-Gamma-Secreting TH17 Cells Derived from Patients with Multiple Sclerosis
    Hu, Dan
    Minh Pham
    Tjon, Emily
    Rosso, Mattia
    Chitnis, Tanuja
    Weiner, Howard L.
    MULTIPLE SCLEROSIS JOURNAL, 2019, 25 : 27 - 28
  • [27] Therapiemonitoring anhand genomweiter RNA-Expressionsprofile IFN-β-behandelter MS-PatientenTherapy monitoring with genome-wide RNA expression profiles of patients with multiple sclerosis treated with interferon beta
    R. Goertsches
    U.K. Zettl
    Der Nervenarzt, 2009, 80 (Suppl 1) : 34 - 35
  • [28] A gene expression study denies the ability of 25 candidate biomarkers to predict the interferon-beta treatment response in multiple sclerosis patients
    Martire, Serena
    Navone, Nicole D.
    Montarolo, Francesca
    Perga, Simona
    Bertolotto, Antonio
    JOURNAL OF NEUROIMMUNOLOGY, 2016, 292 : 34 - 39
  • [29] DNA, microarray analyses disclose differential time-dependent gene expression signatures in peripheral blood cells of interferon beta 1a treated multiple sclerosis patients
    Goertsches, R.
    Koczan, D.
    Serrano-Fernandez, P.
    Thiesen, H-J.
    Moeller, S.
    Zettl, U. K.
    MULTIPLE SCLEROSIS, 2007, 13 : S52 - S53
  • [30] Gene expression profiling study in multiple sclerosis patients treated with interferon beta identifies a group of interferon-induced genes associated with the response to treatment
    Comabella, M.
    Camina-Tato, M.
    Nonell, L.
    Rio, J.
    Sanchez, A.
    Lopez, C.
    Deisenhammer, F.
    Montalban, X.
    Martin, R.
    MULTIPLE SCLEROSIS, 2007, 13 : S27 - S27