Mass-size distribution of PM10 and its characterization of ionic species in fine (PM2.5) and coarse (PM10-2.5) mode, New Delhi, India

被引:18
|
作者
Singh, Khem [1 ]
Tiwari, S. [2 ]
Jha, A. K. [3 ]
Aggarwal, Shankar G. [1 ]
Bisht, D. S. [2 ]
Murty, B. P.
Khan, Zahid H. [4 ]
Gupta, Prabhat K. [1 ]
机构
[1] Natl Phys Lab, New Delhi 110012, India
[2] Indian Inst Trop Meteorol, Delhi Branch, New Delhi 110060, India
[3] Cent Pollut Control Board, Vadodara 390023, Gujarat, India
[4] Jamia Millia Islamia, Dept Phys, New Delhi 110025, India
关键词
Ionic species (cations and anions); Particulate matter; Size distribution; CHEMICAL-COMPOSITION; AMBIENT AIR; ATMOSPHERIC AEROSOLS; PARTICULATE MATTER; URBAN ATMOSPHERE; CHEMISTRY; PRECIPITATION; EXPOSURE; NITRATE; WET;
D O I
10.1007/s11069-013-0652-8
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Size distribution of PM10 mass aerosols and its ionic characteristics were studied for 2 years from January 2006 to December 2007 at central Delhi by employing an 8-stage Andersen Cascade Impactor sampler. The mass of fine (PM2.5) and coarse (PM10-2.5) mode particles were integrated from particle mass determined in different stages. Average concentrations of mass PM10 and PM2.5 were observed to be 306 +/- A 182 and 136 +/- A 84 mu g m(-3), respectively, which are far in excess of annual averages stipulated by the Indian National Ambient Air Quality Standards (PM10: 60 mu g m(-3) and PM2.5: 40 mu g m(-3)). The highest concentrations of PM10-2.5 (coarse) and PM2.5 (fine) were observed 505 +/- A 44 and 368 +/- A 61 mu g m(-3), respectively, during summer (June 2006) period, whereas the lower concentrations of PM10-2.5 (35 +/- A 9 mu g m(-3)) and PM2.5 (29 +/- A 13 mu g m(-3)) were observed during monsoon (September 2007). In summer, because of frequent dust storms, coarse particles are more dominant than fine particles during study period. However, during winter, the PM2.5 contribution became more pronounced as compared to summer probably due to enhanced emissions from anthropogenic activities, burning of biofuels/biomass and other human activities. A high ratio (0.58) of PM2.5/PM10 was observed during winter and low (0.24) during monsoon. A strong correlation between PM10 and PM2.5 (r (2) = 0.93) was observed, indicating that variation in PM10 mass is governed by the variation in PM2.5. Major cations (NH4 (+), Na+, K+, Ca2+ and Mg2+) and anions (F-, Cl-, SO4 (2-) and NO3 (-)) were analyzed along with pH. Average concentrations of SO4 (2-) and NO3 (-) were observed to be 12.93 +/- A 0.98 and 10.33 +/- A 1.10 mu g m(-3), respectively. Significant correlation between SO4 (2-) and NO3 (-) in PM1.0 was observed indicating the major sources of secondary aerosol which may be from thermal power plants located in the southeast and incomplete combustion by vehicular exhaust. A good correlation among secondary species (NH+, NO3 (-) and SO4 (2-)) suggests that most of NH4 (+) is in the form of ammonium sulfate and ammonium nitrate in the atmosphere. During winter, the concentration of Ca2+ was also higher; it may be due to entrainment of roadside dust particles, traffic activities and low temperature. The molar ratio (1.39) between Cl- and Na+ was observed to be close to that of seawater (1.16). The presence of higher Cl- during winter is due to western disturbances and probably local emission of Cl- due to fabric bleaching activity in a number of export garment factories in the proximity of the sampling site.
引用
收藏
页码:775 / 789
页数:15
相关论文
共 50 条
  • [21] Characterization of chemical species in PM2.5 and PM10 aerosols in Brisbane, Australia
    Griffith Univ, Nathan
    Atmos Environ, 22 (3773-3785):
  • [22] Characterization of chemical species in PM2.5 and PM10 aerosols in Hong kong
    Ho, KF
    Lee, SC
    Chan, CK
    Yu, JC
    Chow, JC
    Yao, XH
    ATMOSPHERIC ENVIRONMENT, 2003, 37 (01) : 31 - 39
  • [23] Use of the aerodynamic particle sizer to measure ambient PM10-2.5:: The coarse fraction of PM10
    Peters, TM
    JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION, 2006, 56 (04): : 411 - 416
  • [24] Characterization of PM2.5 Mass in Relation to PM1.0 and PM10 in Megacity Seoul
    Jihyun Han
    Seahee Lim
    Meehye Lee
    Young Jae Lee
    Gangwoong Lee
    Changsub Shim
    Lim-Seok Chang
    Asian Journal of Atmospheric Environment, 16 (1)
  • [25] Characterization of PM2.5 Mass in Relation to PM1.0 and PM10 in Megacity Seoul
    Han, Jihyun
    Lim, Seahee
    Lee, Meehye
    Lee, Young Jae
    Lee, Gangwoong
    Shim, Changsub
    Chang, Lim-Seok
    ASIAN JOURNAL OF ATMOSPHERIC ENVIRONMENT, 2022, 16 (01)
  • [26] Concentration and chemical composition of PM2.5 and PM10-2.5 in the Northeastern Mediterranean
    Kubilay, Nilguen
    Kocak, Mustafa
    Mihalopoulos, Nikos
    REGIONAL CLIMATE VARIABILITY AND ITS IMPACTS IN THE MEDITERRANEAN AREA, 2007, 79 : 167 - +
  • [27] Study of carbonaceous species, morphology and sources of fine (PM2.5) and coarse (PM10) particles along with their climatic nature in India
    Pipal, Atar Singh
    Satsangi, P. Gursumeeran
    ATMOSPHERIC RESEARCH, 2015, 154 : 103 - 115
  • [28] Chemical and morphological study of PM10 and PM2.5 in Pune, India
    Department of Chemistry, University of Pune, Pune - 411 007, India
    Int. J. Environ. Waste Manage., 2 (199-216):
  • [29] Traceability Issue in PM2.5 and PM10 Measurements
    Aggarwal, S. G.
    Kumar, S.
    Mandal, P.
    Sarangi, B.
    Singh, K.
    Pokhariyal, J.
    Mishra, S. K.
    Agarwal, S.
    Sinha, D.
    Singh, S.
    Sharma, C.
    Gupta, P. K.
    MAPAN-JOURNAL OF METROLOGY SOCIETY OF INDIA, 2013, 28 (03): : 153 - 166
  • [30] Traceability Issue in PM2.5 and PM10 Measurements
    Shankar G. Aggarwal
    Sudhanshu Kumar
    Papiya Mandal
    Bighnaraj Sarangi
    Khem Singh
    Jyoti Pokhariyal
    Sumit K. Mishra
    Smita Agarwal
    Deepak Sinha
    Sukhvir Singh
    Chhemendra Sharma
    Prabhat K. Gupta
    MAPAN, 2013, 28 : 153 - 166