Time fractional IHCP with Caputo fractional derivatives

被引:91
|
作者
Murio, Diego A. [1 ]
机构
[1] Univ Cincinnati, Dept Math Sci, Cincinnati, OH 45221 USA
关键词
III-posed problems; Caputo fractional derivatives; Grunwald-Letnikov fractional derivatives; Time fractional inverse heat conduction problem; Finite differences; Mollification;
D O I
10.1016/j.camwa.2008.05.015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The numerical solution of the time fractional inverse heat conduction problem (TFIHCP) on a finite slab is investigated in the presence of measured (noisy) data when the time fractional derivative is interpreted in the sense of Caputo. A finite difference space marching scheme with adaptive regularization, using mollification techniques, is introduced. Error estimates are derived for the numerical solution of the mollified problem and several numerical examples of interest are provided. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2371 / 2381
页数:11
相关论文
共 50 条
  • [41] EXISTENCE RESULTS FOR FRACTIONAL IMPULSIVE DELAY FEEDBACK CONTROL SYSTEMS WITH CAPUTO FRACTIONAL DERIVATIVES
    Zeng, Biao
    EVOLUTION EQUATIONS AND CONTROL THEORY, 2022, 11 (01): : 239 - 258
  • [42] INITIALIZATION OF RIEMANN-LIOUVILLE AND CAPUTO FRACTIONAL DERIVATIVES
    Jean-Claude, Trigeassou
    Nezha, Maamri
    Alain, Oustaloup
    PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, 2011, VOL 3, PTS A AND B, 2012, : 219 - 226
  • [43] On Caputo k-Fractional Derivatives and Associated Inequalities
    Waheed, Asif
    Rehman, A. U.
    Qureshi, M., I
    Shah, F. A.
    Khan, K. A.
    Farid, G.
    IEEE ACCESS, 2019, 7 : 32137 - 32145
  • [44] Caputo derivatives of fractional variable order: Numerical approximations
    Tavares, Dina
    Almeida, Ricardo
    Torres, Delfim F. M.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2016, 35 : 69 - 87
  • [45] A delayed plant disease model with Caputo fractional derivatives
    Pushpendra Kumar
    Dumitru Baleanu
    Vedat Suat Erturk
    Mustafa Inc
    V. Govindaraj
    Advances in Continuous and Discrete Models, 2022
  • [46] Caputo-type modification of the Hadamard fractional derivatives
    Fahd Jarad
    Thabet Abdeljawad
    Dumitru Baleanu
    Advances in Difference Equations, 2012
  • [47] Fractional Herglotz variational principles with generalized Caputo derivatives
    Garra, Roberto
    Taverna, Giorgio S.
    Torres, Delfim F. M.
    CHAOS SOLITONS & FRACTALS, 2017, 102 : 94 - 98
  • [48] Existence of solutions of BVPs for impulsive fractional Langevin equations involving Caputo fractional derivatives
    Liu, Yuji
    Agarwal, Ravi
    TURKISH JOURNAL OF MATHEMATICS, 2019, 43 (05) : 2451 - 2472
  • [49] Existence and uniqueness of solutions to fractional differential equations in the frame of generalized Caputo fractional derivatives
    Gambo, Y. Y.
    Ameen, R.
    Jarad, Fahd
    Abdeljawad, T.
    ADVANCES IN DIFFERENCE EQUATIONS, 2018,
  • [50] Fractional cyclic integrals and Routh equations of fractional Lagrange system with combined Caputo derivatives
    王琳莉
    傅景礼
    Chinese Physics B, 2014, 23 (12) : 281 - 284