Time-domain analysis of the hydroelastic response of cavitating propulsors

被引:0
|
作者
Young, YL [1 ]
机构
[1] Princeton Univ, Dept Civil & Environm Engn, Princeton, NJ 08544 USA
来源
Fluid Structure Interaction and Moving Boundary Problems | 2005年 / 84卷
关键词
fluid-structure interaction; hydroelastic; cavitation; propeller;
D O I
暂无
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
A 3-D boundary element method (BEM) is coupled with a 3-D finite element method (FEM) to model the hydroelastic response of cavitating propulsors. The BEM is applied to evaluate the moving cavity boundaries and hydrodynamic forces, as well as the added mass and hydrodynamic damping matrices. The FEM is applied to evaluate the dynamic blade stresses and deformations. The effects of fluid-structure interaction are included by superimposing the added mass and hydrodynamic damping matrices to the material mass and damping matrices in the equilibrium equation of motion. The problem is solved in the time-domain using an implicit time integration scheme. An overview of the formulation is presented along with numerical and experiment validation studies. The effects of fluid-structure interaction and cavitation on the propeller performance are discussed.
引用
收藏
页码:57 / 69
页数:13
相关论文
共 50 条
  • [21] A higher order FEM for time-domain hydroelastic analysis of large floating bodies in an inhomogeneous shallow water environment
    Papathanasiou, T. K.
    Karperaki, A.
    Theotokoglou, E. E.
    Belibassakis, K. A.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2015, 471 (2173):
  • [22] Time-domain response of the ARIANNA detector
    Barwick, S. W.
    Berg, E. C.
    Besson, D. Z.
    Duffin, T.
    Hanson, J. C.
    Klein, S. R.
    Kleinfelder, S. A.
    Piasecki, M.
    Ratzlaff, K.
    Reed, C.
    Roumi, M.
    Stezelberger, T.
    Tatar, J.
    Walker, J.
    Young, R.
    Zou, L.
    ASTROPARTICLE PHYSICS, 2015, 62 : 139 - 151
  • [23] Sampling and Time-Domain Analysis
    Brandt, Anders
    Ahlin, Kjell
    SOUND AND VIBRATION, 2010, 44 (05): : 13 - 17
  • [24] TIME-DOMAIN RAY ANALYSIS
    CRONSON, HM
    PROUD, JM
    PROCEEDINGS OF THE INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS, 1970, 58 (09): : 1383 - &
  • [25] Analysis of plasma-elastic component of time-domain photoacoustic response
    Stanimirovic, Ivanka
    Markushev, Dragana
    Stanimirovic, Zdravko
    Galovic, Slobodanka
    Djordjevic, Katarina
    JOURNAL OF APPLIED PHYSICS, 2023, 133 (23)
  • [26] IMPORTANCE OF BOTH AMPLITUDE AND INCIDENCE MEASURES IN TIME-DOMAIN ANALYSIS - RESPONSE
    RECHTSCHAFFEN, A
    BERGMANN, BM
    MISTLBERGER, R
    SLEEP, 1988, 11 (06) : 572 - 572
  • [27] Noise reduction in analysis of dielectric response function by time-domain reflectometry
    Artacho, JM
    Forniés-Marquina, JM
    García, M
    Letosa, J
    15EME COLLOQUE INTERNATIONAL OPTIQUE HERTZIENNE ET DIELECTRIQUES, OHD'99, 1999, : D1 - D4
  • [28] Numerical analysis of time-domain response for building to different electromagnetic pulses
    Institute of Applied Electronics, CAEP, P.O. Box 919-1017, Mianyang 621900, China
    Qiangjiguang Yu Lizishu, 2009, 7 (1049-1053):
  • [29] Modeling and time-domain response analysis of decoupling hydraulic engine mount
    Liu, Xuelai
    Du, Hao
    Chen, Junjie
    Zhendong yu Chongji/Journal of Vibration and Shock, 2021, 40 (20): : 135 - 142
  • [30] Coupled time-domain analysis of the response of a spar and its mooring system
    Chen, XH
    Zhang, J
    Ma, W
    PROCEEDINGS OF THE NINTH (1999) INTERNATIONAL OFFSHORE AND POLAR ENGINEERING CONFERENCE, VOL 1, 1999, 1999, : 293 - 300