Improvement of the kernel minimum squared error model for fast feature extraction
被引:3
|
作者:
Wang, Jinghua
论文数: 0引用数: 0
h-index: 0
机构:
Hong Kong Polytech Univ, Biometr Res Ctr, Dept Comp, Kowloon, Hong Kong, Peoples R ChinaHong Kong Polytech Univ, Biometr Res Ctr, Dept Comp, Kowloon, Hong Kong, Peoples R China
Wang, Jinghua
[1
]
Wang, Peng
论文数: 0引用数: 0
h-index: 0
机构:
Harbin Inst Technol, Biocomp Res Ctr, Sch Comp Sci & Technol, Harbin 150001, Peoples R ChinaHong Kong Polytech Univ, Biometr Res Ctr, Dept Comp, Kowloon, Hong Kong, Peoples R China
Wang, Peng
[2
]
Li, Qin
论文数: 0引用数: 0
h-index: 0
机构:
Shenzhen Univ, Coll Optoelect Engn, Shenzhen, Guangdong, Peoples R ChinaHong Kong Polytech Univ, Biometr Res Ctr, Dept Comp, Kowloon, Hong Kong, Peoples R China
Li, Qin
[3
]
You, Jane
论文数: 0引用数: 0
h-index: 0
机构:
Hong Kong Polytech Univ, Biometr Res Ctr, Dept Comp, Kowloon, Hong Kong, Peoples R ChinaHong Kong Polytech Univ, Biometr Res Ctr, Dept Comp, Kowloon, Hong Kong, Peoples R China
You, Jane
[1
]
机构:
[1] Hong Kong Polytech Univ, Biometr Res Ctr, Dept Comp, Kowloon, Hong Kong, Peoples R China
[2] Harbin Inst Technol, Biocomp Res Ctr, Sch Comp Sci & Technol, Harbin 150001, Peoples R China
[3] Shenzhen Univ, Coll Optoelect Engn, Shenzhen, Guangdong, Peoples R China
The kernel minimum squared error (KMSE) expresses the feature extractor as a linear combination of all the training samples in the high-dimensional kernel space. To extract a feature from a sample, KMSE should calculate as many kernel functions as the training samples. Thus, the computational efficiency of the KMSE-based feature extraction procedure is inversely proportional to the size of the training sample set. In this paper, we propose an efficient kernel minimum squared error (EKMSE) model for two-class classification. The proposed EKMSE expresses each feature extractor as a linear combination of nodes, which are a small portion of the training samples. To extract a feature from a sample, EKMSE only needs to calculate as many kernel functions as the nodes. As the nodes are commonly much fewer than the training samples, EKMSE is much faster than KMSE in feature extraction. The EKMSE can achieve the same training accuracy as the standard KMSE. Also, EKMSE avoids the overfitting problem. We implement the EKMSE model using two algorithms. Experimental results show the feasibility of the EKMSE model.
机构:
Yuan Ze Univ, Innovat Ctr Big Data & Digital Convergence, Taoyuan, Taiwan
Yuan Ze Univ, Dept Informat Management, Taoyuan, TaiwanYuan Ze Univ, Innovat Ctr Big Data & Digital Convergence, Taoyuan, Taiwan
机构:
Department of Computational Mathematics and Cybernetics, Moscow State UniversityDepartment of Computational Mathematics and Cybernetics, Moscow State University
Ushakov V.G.
Ushakov N.G.
论文数: 0引用数: 0
h-index: 0
机构:
Department of Mathematical Sciences, Norwegian University of Science and TechnologyDepartment of Computational Mathematics and Cybernetics, Moscow State University
机构:
Univ Calif Santa Barbara, Dept Elect & Comp Engn, Santa Barbara, CA 93106 USAUniv Calif Santa Barbara, Dept Elect & Comp Engn, Santa Barbara, CA 93106 USA
机构:
Harbin Inst Technol, Shenzhen Grad Sch, Biocomp Res Ctr, Shenzhen 518055, Peoples R China
Key Lab Network Oriented Intelligent Computat, Shenzhen 518055, Peoples R China
East China Jiaotong Univ, Sch Basic Sci, Nanchang 330013, Peoples R ChinaHarbin Inst Technol, Shenzhen Grad Sch, Biocomp Res Ctr, Shenzhen 518055, Peoples R China
Fan, Zizhu
Wang, Jinghua
论文数: 0引用数: 0
h-index: 0
机构:
Harbin Inst Technol, Shenzhen Grad Sch, Biocomp Res Ctr, Shenzhen 518055, Peoples R China
Key Lab Network Oriented Intelligent Computat, Shenzhen 518055, Peoples R ChinaHarbin Inst Technol, Shenzhen Grad Sch, Biocomp Res Ctr, Shenzhen 518055, Peoples R China
Wang, Jinghua
Zhu, Qi
论文数: 0引用数: 0
h-index: 0
机构:
Harbin Inst Technol, Shenzhen Grad Sch, Biocomp Res Ctr, Shenzhen 518055, Peoples R China
Key Lab Network Oriented Intelligent Computat, Shenzhen 518055, Peoples R ChinaHarbin Inst Technol, Shenzhen Grad Sch, Biocomp Res Ctr, Shenzhen 518055, Peoples R China
Zhu, Qi
Fang, Xiaozhao
论文数: 0引用数: 0
h-index: 0
机构:
Harbin Inst Technol, Shenzhen Grad Sch, Biocomp Res Ctr, Shenzhen 518055, Peoples R China
Key Lab Network Oriented Intelligent Computat, Shenzhen 518055, Peoples R ChinaHarbin Inst Technol, Shenzhen Grad Sch, Biocomp Res Ctr, Shenzhen 518055, Peoples R China
Fang, Xiaozhao
Cui, Jinrong
论文数: 0引用数: 0
h-index: 0
机构:
Harbin Inst Technol, Shenzhen Grad Sch, Biocomp Res Ctr, Shenzhen 518055, Peoples R China
Key Lab Network Oriented Intelligent Computat, Shenzhen 518055, Peoples R ChinaHarbin Inst Technol, Shenzhen Grad Sch, Biocomp Res Ctr, Shenzhen 518055, Peoples R China
Cui, Jinrong
Li, Chunhua
论文数: 0引用数: 0
h-index: 0
机构:
East China Jiaotong Univ, Sch Basic Sci, Nanchang 330013, Peoples R ChinaHarbin Inst Technol, Shenzhen Grad Sch, Biocomp Res Ctr, Shenzhen 518055, Peoples R China