Label-free detection of glycoproteins by the lectin biosensor down to attomolar level using gold nanoparticles

被引:77
|
作者
Bertok, Tomas [1 ]
Sediva, Alena [1 ]
Katrlik, Jaroslav [1 ]
Gemeiner, Pavol [2 ]
Mikula, Milan [2 ]
Nosko, Martin [3 ]
Tkac, Jan [1 ]
机构
[1] Slovak Acad Sci, Inst Chem, Dept Glycobiotechnol, Bratislava 84538, Slovakia
[2] Slovak Univ Technol Bratislava, Fac Chem & Food Technol, Dept Graph Arts Technol & Appl Photochem, Bratislava 81237, Slovakia
[3] Slovak Acad Sci, Inst Mat & Machine Mech, Bratislava 83102, Slovakia
基金
欧洲研究理事会;
关键词
Ultrasensitive biosensor; Lectin; Electrochemical impedance spectroscopy (EIS); Self-assembled monolayer (SAM); Gold nanoparticles; Glycoproteins; Attomolar (aM) concentration; Sialic acid; SURFACE-PLASMON RESONANCE; SELF-ASSEMBLED MONOLAYERS; FREE PROTEIN-DETECTION; IMPEDANCE SPECTROSCOPY; ELECTROCHEMICAL BIOSENSORS; PEPTIDE APTAMERS; REAL-TIME; DNA; ELECTRODE; BINDING;
D O I
10.1016/j.talanta.2013.02.052
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
We present here an ultrasensitive electrochemical biosensor based on a lectin biorecognition capable to detect concentrations of glycoproteins down to attomolar (aM) level by investigation of changes in the charge transfer resistance (R-ct) using electrochemical impedance spectroscopy (EIS). On polycrystalline gold modified by an aminoalkanethiol linker layer, gold nanoparticles were attached. A Sambucus nigra agglutinin was covalently immobilised on a mixed self-assembled monolayer formed on gold nanoparticles and finally, the biosensor surface was blocked by poly(vinyl alcohol). The lectin biosensor was applied for detection of sialic acid containing glycoproteins fetuin and asialofetuin. Building of a biosensing interface was carefully characterised by a broad range of techniques such as electrochemistry, EIS, atomic force microscopy, scanning electron microscopy and surface plasmon resonance with the best performance of the biosensor achieved by application of HS-(CH2)(11)-NH2 linker and gold nanoparticles with a diameter of 20 nm. The lectin biosensor responded to an addition of fetuin (8.7% of sialic acid) with sensitivity of (338 +/- 11) Omega decade(-1) and to asialofetuin (<= 0.5% of sialic acid) with sensitivity of (109 +/- 10) Omega decade(-1) with a blank experiment with oxidised asialofetuin (without recognisable sialic acid) revealing sensitivity of detection of (79 +/- 13) Omega decade(-1). These results suggest the lectin biosensor responded to changes in the glycan amount in a quantitative way with a successful validation by a lectin microarray. Such a biosensor device has a great potential to be employed in early biomedical diagnostics of diseases such as arthritis or cancer, which are connected to aberrant glycosylation of protein biomarkers in biological fluids. (c) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:11 / 18
页数:8
相关论文
共 50 条
  • [21] A Fast Colourimetric Assay for Lead Detection Using Label-Free Gold Nanoparticles (AuNPs)
    Zhong, Guowei
    Liu, Jinxia
    Liu, Xinyu
    MICROMACHINES, 2015, 6 (04) : 462 - 472
  • [22] Label-Free Colorimetric Detection of Cadmium Ions in Rice Samples Using Gold Nanoparticles
    Guo, Yongming
    Zhang, Yi
    Shao, Huawu
    Wang, Zhuo
    Wang, Xuefei
    Jiang, Xingyu
    ANALYTICAL CHEMISTRY, 2014, 86 (17) : 8530 - 8534
  • [23] Paracoccidioides brasiliensis Molecular Detection by the Label-Free Colorimetric Method Using Gold Nanoparticles
    Olavo O. Comparato Filho
    Marcela A. Cândido
    Thaís S. Veriato
    Guilherme M. Lemes
    Maiara L. Castilho
    Leandro Raniero
    Brazilian Journal of Physics, 2019, 49 : 55 - 61
  • [24] Paracoccidioides brasiliensis Molecular Detection by the Label-Free Colorimetric Method Using Gold Nanoparticles
    Comparato Filho, Olavo O.
    Candido, Marcela A.
    Veriato, Thais S.
    Lemes, Guilherme M.
    Castilho, Maiara L.
    Raniero, Leandro
    BRAZILIAN JOURNAL OF PHYSICS, 2019, 49 (01) : 55 - 61
  • [25] Spread spectrum SERS allows label-free detection of attomolar neurotransmitters
    Lee, Wonkyoung
    Kang, Byoung-Hoon
    Yang, Hyunwoo
    Park, Moonseong
    Kwak, Ji Hyun
    Chung, Taerin
    Jeong, Yong
    Kim, Bong Kyu
    Jeong, Ki-Hun
    NATURE COMMUNICATIONS, 2021, 12 (01)
  • [26] Label-free biosensor for viruses and bacteria detection
    Aznakayev, Emir
    Aznakayeva, Diana
    NANO-, BIO-, INFO-TECH SENSORS, AND 3D SYSTEMS IV, 2020, 11378
  • [27] Label-Free Capacitive Biosensor for Detection of Cryptosporidium
    Luka, George
    Samiei, Ehsan
    Dehghani, Soroush
    Johnson, Thomas
    Najjaran, Homayoun
    Hoorfar, Mina
    SENSORS, 2019, 19 (02):
  • [28] Spread spectrum SERS allows label-free detection of attomolar neurotransmitters
    Wonkyoung Lee
    Byoung-Hoon Kang
    Hyunwoo Yang
    Moonseong Park
    Ji Hyun Kwak
    Taerin Chung
    Yong Jeong
    Bong Kyu Kim
    Ki-Hun Jeong
    Nature Communications, 12
  • [29] A label-free electrochemical immunosensor based on gold nanoparticles for detection of paraoxon
    Hu, SQ
    Xie, JW
    Xu, QH
    Rong, KT
    Shen, GL
    Yu, RQ
    TALANTA, 2003, 61 (06) : 769 - 777
  • [30] Label-free capacitive biosensor for sensitive detection of multiple biomarkers using gold interdigitated capacitor arrays
    Qureshi, Anjum
    Niazi, Javed H.
    Kallempudi, Saravan
    Gurbuz, Yasar
    BIOSENSORS & BIOELECTRONICS, 2010, 25 (10): : 2318 - 2323