On bi-Hamiltonian structure of two-component Novikov equation

被引:49
|
作者
Li, Nianhua [1 ]
Liu, Q. P. [1 ]
机构
[1] China Univ Min & Technol, Dept Math, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
Bi-Hamiltonian structure; Camassa-Holm equation; Degasperis-Procesi equation; Zero-curvature representation; PEAKON EQUATIONS; SOLITONS;
D O I
10.1016/j.physleta.2012.11.023
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this Letter, we present a bi-Hamiltonian structure for the two-component Novikov equation. We also show that proper reduction of this bi-Hamiltonian structure leads to the Hamiltonian operators found by Hone and Wang for the Novikov equation. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:257 / 261
页数:5
相关论文
共 50 条
  • [21] Recursion operators and bi-Hamiltonian structure of the general heavenly equation
    Sheftel, M. B.
    Yazici, D.
    Malykh, A. A.
    JOURNAL OF GEOMETRY AND PHYSICS, 2017, 116 : 124 - 139
  • [22] Continuity and minimization of spectrum related with the two-component Novikov equation
    Duan, Lianyuan
    Shi, Guoliang
    Yan, Jun
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 412 : 272 - 321
  • [23] Global conservative weak solutions for the two-component Novikov equation
    He, Cheng
    Qu, Changzheng
    JOURNAL OF MATHEMATICAL PHYSICS, 2021, 62 (10)
  • [24] On the Cauchy problem of a new integrable two-component Novikov equation
    Yongsheng Mi
    Daiwen Huang
    Monatshefte für Mathematik, 2020, 193 : 361 - 381
  • [25] On the Cauchy problem for the new integrable two-component Novikov equation
    Yongsheng Mi
    Chunlai Mu
    Annali di Matematica Pura ed Applicata (1923 -), 2020, 199 : 1091 - 1122
  • [26] On the Cauchy problem for the new integrable two-component Novikov equation
    Mi, Yongsheng
    Mu, Chunlai
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2020, 199 (03) : 1091 - 1122
  • [27] On the Cauchy problem of a new integrable two-component Novikov equation
    Mi, Yongsheng
    Huang, Daiwen
    MONATSHEFTE FUR MATHEMATIK, 2020, 193 (02): : 361 - 381
  • [28] A bi-Hamiltonian supersymmetric geodesic equation
    Lenells, Jonatan
    LETTERS IN MATHEMATICAL PHYSICS, 2008, 85 (01) : 55 - 63
  • [29] BI-HAMILTONIAN FORMULATIONS OF THE BATEMAN EQUATION
    MULVEY, JA
    PHYSICS LETTERS A, 1995, 207 (3-4) : 147 - 152
  • [30] Three-Component Generalisation of Burgers Equation and Its Bi-Hamiltonian Structures
    Liu, Wei
    Geng, Xianguo
    Xue, Bo
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2017, 72 (05): : 469 - 475