Resting-State Networks in Schizophrenia

被引:152
|
作者
Karbasforoushan, H. [1 ,2 ]
Woodward, N. D. [1 ,2 ]
机构
[1] Vanderbilt Univ, Sch Med, Psychot Disorders Program, Nashville, TN 37212 USA
[2] Vanderbilt Univ, Sch Med, Psychiat Neuroimaging Program, Dept Psychiat, Nashville, TN 37212 USA
关键词
Schizophrenia; Resting-state fMRI; Dysconnectivity; INTRINSIC FUNCTIONAL CONNECTIVITY; NAIVE 1ST-EPISODE SCHIZOPHRENIA; DEFAULT MODE; PREFRONTAL CORTEX; BIPOLAR DISORDER; CEREBRAL-CORTEX; BRAIN NETWORKS; 1ST EPISODE; DYSCONNECTIVITY; FLUCTUATIONS;
D O I
10.2174/156802612805289863
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
Schizophrenia has been conceptualized as a disorder of altered brain connectivity (i.e. dysconnectivity). Until relatively recently, it was not feasible to test dysconnectivity hypotheses of schizophrenia in vivo. Resting-state functional magnetic resonance imaging (fMRI) is a powerful tool for mapping functional networks of the brain, such as the default mode network (DMN), and investigating the systems-level pathology of neurological and psychiatric disorders. In this article, we review the latest findings from resting-state fMRI studies on schizophrenia. Despite the wide array of methods used and heterogeneity of patient samples, several tentative conclusions may be drawn from the existing literature. 1) Connectivity of the DMN is altered in schizophrenia. Findings vary across studies; however, a majority of investigations reported hyper-connectivity of the DMN. 2) Resting-state connectivity of the prefrontal cortex (PFC) is reduced in schizophrenia, particularly intra-PFC connectivity. 3) Cortical-subcortical networks, including thalamocortical, frontolimbic, and cortico-cerebellar networks are altered in schizophrenia. 4) Preliminary findings indicate that functional connectivity within auditory/language networks and the basal ganglia is related to specific clinical symptoms, including auditory-verbal hallucinations and delusions. 5) Whole-brain network topology measures based on graph theory indicate that functional brain networks in schizophrenia are characterized by reduced small-worldness, lower degree connectivity of brain hubs, and decreased modularity. 6) Some of the alterations in functional connectivity observed in probands are present in unaffected relatives, raising the possibility that functional dysconnectivity is an endophenotype related to genetic risk for schizophrenia. Combined, these findings provide broad support for dysconnectivity theories of schizophrenia. We conclude our review with a discussion of the limitations of the existing literature and potentially important areas of future research.
引用
收藏
页码:2404 / 2414
页数:11
相关论文
共 50 条
  • [21] RESTING-STATE NETWORK CORRELATES OF PSYCHOTIC SYMPTOMS IN SCHIZOPHRENIA
    Rotarska-Jagiela, Anna
    van de Ven, Vincent
    Eget-Knoechel, Viola
    Uhlhaas, Peter J.
    Vogeley, Kai
    Linden, David E. J.
    SCHIZOPHRENIA RESEARCH, 2010, 117 (2-3) : 468 - 468
  • [22] Progressive alterations of resting-state hypothalamic dysconnectivity in schizophrenia
    Li, Xing
    Zeng, Jiaxin
    Liu, Naici
    Yang, Chengmin
    Tao, Bo
    Sun, Hui
    Gong, Qiyong
    Zhang, Wenjing
    Li, Chiang-Shan R.
    Lui, Su
    PROGRESS IN NEURO-PSYCHOPHARMACOLOGY & BIOLOGICAL PSYCHIATRY, 2024, 135
  • [23] Review of thalamocortical resting-state fMRI studies in schizophrenia
    Giraldo-Chica, Monica
    Woodward, Neil D.
    SCHIZOPHRENIA RESEARCH, 2017, 180 : 58 - 63
  • [24] Altered resting-state functional connectivity of the cerebellum in schizophrenia
    Chuanjun Zhuo
    Chunli Wang
    Lina Wang
    Xinyu Guo
    Qingying Xu
    Yanyan Liu
    Jiajia Zhu
    Brain Imaging and Behavior, 2018, 12 : 383 - 389
  • [25] Resting-state thalamic dysconnectivity in schizophrenia and relationships with symptoms
    Ferri, J.
    Ford, J. M.
    Roach, B. J.
    Turner, J. A.
    van Erp, T. G.
    Voyvodic, J.
    Preda, A.
    Belger, A.
    Bustillo, J.
    O'Leary, D.
    Mueller, B. A.
    Lim, K. O.
    McEwen, S. C.
    Calhoun, V. D.
    Diaz, M.
    Glover, G.
    Greve, D.
    Wible, C. G.
    Vaidya, J. G.
    Potkin, S. G.
    Mathalon, D. H.
    PSYCHOLOGICAL MEDICINE, 2018, 48 (15) : 2492 - 2499
  • [26] A baseline for the multivariate comparison of resting-state networks
    Allen, Elena A.
    Erhardt, Erik B.
    Damaraju, Eswar
    Gruner, William
    Segall, Judith M.
    Silva, Rogers F.
    Havlicek, Martin
    Rachakonda, Srinivas
    Fries, Jill
    Kalyanam, Ravi
    Michael, Andrew M.
    Caprihan, Arvind
    Turner, Jessica A.
    Eichele, Tom
    Adelsheim, Steven
    Bryan, Angela D.
    Bustillo, Juan
    Clark, Vincent P.
    Ewing, Sarah W. Feldstein
    Filbey, Francesca
    Ford, Corey C.
    Hutchison, Kent
    Jung, Rex E.
    Kiehl, Kent A.
    Kodituwakku, Piyadasa
    Komesu, Yuko M.
    Mayer, Andrew R.
    Pearlson, Godfrey D.
    Phillips, John P.
    Sadek, Joseph R.
    Stevens, Michael
    Teuscher, Ursina
    Thoma, Robert J.
    Calhoun, Vince D.
    FRONTIERS IN SYSTEMS NEUROSCIENCE, 2011, 5
  • [27] Information Flow Between Resting-State Networks
    Diez, Ibai
    Erramuzpe, Asier
    Escudero, Inaki
    Mateos, Beatriz
    Cabrera, Alberto
    Marinazzo, Daniele
    Sanz-Arigita, Ernesto J.
    Stramaglia, Sebastiano
    Cortes Diaz, Jesus M.
    BRAIN CONNECTIVITY, 2015, 5 (09) : 554 - 564
  • [28] Resting-state Networks in TinnitusA Scoping Review
    Tori Elyssa Kok
    Deepti Domingo
    Joshua Hassan
    Alysha Vuong
    Brenton Hordacre
    Chris Clark
    Panagiotis Katrakazas
    Giriraj Singh Shekhawat
    Clinical Neuroradiology, 2022, 32 : 903 - 922
  • [29] Energy landscapes of resting-state brain networks
    Watanabe, Takamitsu
    Hirose, Satoshi
    Wada, Hiroyuki
    Imai, Yoshio
    Machida, Toru
    Shirouzu, Ichiro
    Konishi, Seiki
    Miyashita, Yasushi
    Masuda, Naoki
    FRONTIERS IN NEUROINFORMATICS, 2014, 8
  • [30] Vulnerability to Depression and Oscillatory Resting-State Networks
    Knyazev, G. G.
    Savostyanov, A. N.
    Bocharov, A. V.
    Saprygin, A. E.
    Tamozhnikov, S. S.
    ZHURNAL VYSSHEI NERVNOI DEYATELNOSTI IMENI I P PAVLOVA, 2015, 65 (03) : 344 - 351