Pixel scaling in infrared focal plane arrays

被引:14
|
作者
Catrysse, Peter B. [1 ]
Skauli, Torbjorn [2 ]
机构
[1] Stanford Univ, Edward L Ginzton Lab, Stanford, CA 94305 USA
[2] Norwegian Def Res Estab, N-2027 Kjeller, Norway
关键词
Electromagnetic simulation - Mercury compounds - II-VI semiconductors - Cadmium telluride - Focusing - Incident light - Low pass filters;
D O I
10.1364/AO.52.000C72
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We discuss effects that arise in pixels of IR focal plane arrays (FPAs) when pixel size scales down to approach the wavelength of the incident radiation. To study these effects, we perform first-principles electromagnetic simulations of pixel structures based on a mercury-cadmium-telluride photoconductor for use in FPAs. Specifically, we calculate the pixel quantum efficiency and crosstalk as pixel size scales from 16 mu m, which is in the range of current detectors, down to 0.75 mu m, corresponding to subwavelength detectors. Our numerical results indicate the possibility of wavelength-size (similar to 4 mu m) and even subwavelength-size (similar to 1 mu m) pixels for IR FPAs. In addition, we explore opportunities that emerge for controlling light with subwavelength structures inside FPA pixels. As an illustration, we find that the low-pass filtering effect of a metal film aperture can exemplify the impact and the possible role that wavelength-scale optics plays in very small pixels. (C) 2013 Optical Society of America
引用
收藏
页码:C72 / C77
页数:6
相关论文
共 50 条
  • [21] A STUDY ON PIXEL DEFECT COMPENSATION FOR STARING FOCAL PLANE ARRAYS
    RYSTROM, L
    INFRARED TECHNOLOGY XV, 1989, 1157 : 250 - 266
  • [22] Modulation transfer function of active pixel focal plane arrays
    Kim, Q
    Yano, G
    Wrigley, CJ
    Cunningham, TJ
    Pain, B
    OPTOELECTRONIC INTEGRATED CIRCUITS IV, 2000, 3950 : 49 - 56
  • [23] Monolithic Integration of Diffractive Microlens Arrays and Infrared Focal Plane Arrays
    Sihai Chen
    Xinjian Yi
    Hongchen Wang
    Luqin Liu
    Yingrui Wang
    International Journal of Infrared and Millimeter Waves, 2002, 23 : 705 - 710
  • [24] Monolithic integration technique for microlens arrays with infrared focal plane arrays
    Chen, SH
    Yi, XJ
    Kong, LB
    He, M
    Wang, HC
    INFRARED PHYSICS & TECHNOLOGY, 2002, 43 (02) : 109 - 112
  • [25] Modulation Transfer Function of Infrared Focal Plane Arrays
    Gunapala, S. D.
    Rafol, S. B.
    Ting, D. Z.
    Soibel, A.
    Hill, C. J.
    Khoshakhlagh, A.
    Liu, J. K.
    Mumolo, J. M.
    Keo, S. A.
    Hoeglund, L.
    Luong, E. M.
    INFRARED REMOTE SENSING AND INSTRUMENTATION XXIII, 2015, 9608
  • [26] ANTIBLOOMING SYSTEM FOR INFRARED HYBRID FOCAL PLANE ARRAYS
    ARQUES, M
    MUNIER, B
    PORTMANN, J
    REBOUL, JP
    PROCEEDINGS OF THE SOCIETY OF PHOTO-OPTICAL INSTRUMENTATION ENGINEERS, 1983, 350 : 12 - 19
  • [27] Advanced Design of Scanning Infrared Focal Plane Arrays
    Dvoretskii S.A.
    Kovchavtsev A.P.
    Lee I.I.
    Polovinkin V.G.
    Sidorov G.Y.
    Yakushev M.V.
    Optoelectronics, Instrumentation and Data Processing, 2018, 54 (6) : 569 - 575
  • [28] Antimonide Based Infrared Detectors and Focal Plane Arrays
    Krishna, Sanjay
    2018 IEEE RESEARCH AND APPLICATIONS OF PHOTONICS IN DEFENSE CONFERENCE (RAPID), 2018, : 141 - 141
  • [29] Lead chalcogenides based infrared focal plane arrays
    Agranov, GA
    Novoselov, SK
    Nesterov, VK
    Sergeev, DN
    THIRD CONFERENCE ON PHOTONIC SYSTEMS FOR ECOLOGICAL MONITORING, 1997, 3200 : 163 - 168
  • [30] Current status of infrared detectors and focal plane arrays
    Park, YS
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 1998, 32 (04) : 443 - 451