Numerical simulation of thermal property effect of heat transfer plate on bubble growth with microlayer evaporation during nucleate pool boiling

被引:41
|
作者
Chen, Zhihao [1 ,2 ]
Wu, Feifei [2 ]
Utaka, Yoshio [1 ,2 ]
机构
[1] Tianjin Univ, Minist Educ, Key Lab Efficient Utilizat Low & Medium Grade Ener, Tianjin, Peoples R China
[2] Tianjin Univ, Sch Mech Engn, 135 Yaguan Rd,Tianjin Haihe Educ Pk, Tianjin 300350, Peoples R China
基金
中国国家自然科学基金;
关键词
Numerical simulation; Nucleate pool boiling; Microlayer evaporation; VOF; Phase change heat transfer; LASER INTERFEROMETRIC METHOD; WATER; TEMPERATURE; ETHANOL;
D O I
10.1016/j.ijheatmasstransfer.2017.11.083
中图分类号
O414.1 [热力学];
学科分类号
摘要
It is well known that during nucleate boiling, a large amount of energy can be transferred under relatively small temperature difference between the heat transfer surface and fluid, indicating that high efficiency of heat transfer can be achieved. However, the mechanism of nucleate boiling is still not well elucidated owing to the complexity of the phenomenon. The thermal properties of heat transfer plate, which is directly in contact with the microlayer, may have a significant impact on heat transfer and evaporation characteristics of the microlayer. A volume of fluid (VOF) method based algorithm, in which the experimentally measured microlayer structure was taken into account, has been developed to simulate micro layer evaporation and single bubble behavior. The influence of thermal conductivity of heat transfer plates on the contribution of microlayer evaporation was examined. It was concluded that more efficient heat supply to the heat transfer surface can be achieved for the heat transfer plate with higher thermal conductivity. Microlayer evaporation occupied approximately 30-70% of the bubble volume, indicating that microlayer evaporation is a principal mechanism of boiling heat transfer. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:989 / 996
页数:8
相关论文
共 50 条
  • [31] The effect of surfactants on bubble growth, wall thermal patterns and heat transfer in pool boiling
    Hetsroni, G
    Zakin, JL
    Lin, Z
    Mosyak, A
    Pancallo, EA
    Rozenblit, R
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2001, 44 (02) : 485 - 497
  • [32] Steady numerical simulation of pool nucleate boiling beat transfer
    Wang, AL
    Yang, CX
    Wu, YT
    Yuan, XG
    PROCEEDINGS OF THE 3RD INTERNATIONAL SYMPOSIUM ON HEAT TRANSFER ENHANCEMENT AND ENERGY CONSERVATION, VOLS 1 AND 2, 2004, : 88 - 94
  • [33] Experimental Study of Effect of Nucleation Site Size on Bubble Dynamics during Nucleate Pool Boiling Heat Transfer
    Najim, Abdul
    Acharya, Anil. R.
    DYNAMICS OF MACHINES AND MECHANISMS, INDUSTRIAL RESEARCH, 2014, 592-594 : 1596 - 1600
  • [34] NUMERICAL SIMULATION OF BUBBLE GROWTH AND COLLAPSE IN POOL BOILING: EFFECT OF BUBBLE MOTION
    Paruya, Swapan
    Bhati, Jyoti
    HEAT TRANSFER RESEARCH, 2021, 52 (18) : 57 - 76
  • [35] Numerical simulation of bubble merger process on a single nucleation site during pool nucleate boiling
    Son, G
    Ramanujapu, N
    Dhir, VK
    JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2002, 124 (01): : 51 - 62
  • [36] CORRELATION FOR NUCLEATE POOL BOILING HEAT TRANSFER INCLUDING EFFECT OF BUBBLE DEPARTURE FORCES.
    Singh, Bhoop
    Saini, J.S.
    Journal of the Institution of Engineers (India): Mechanical Engineering Division, 1980, 61 : 73 - 76
  • [37] Wall Superheat Effect on Single Bubble Growth During Nucleate Boiling at Saturated Pool
    Kim, Jeongbae
    Lee, Han Choon
    Kim, Moo Hwan
    TRANSACTIONS OF THE KOREAN SOCIETY OF MECHANICAL ENGINEERS B, 2005, 29 (05) : 633 - 642
  • [38] NUMERICAL SIMULATION OF BUBBLE SHAPE AND DEPARTURE IN NUCLEATE POOL BOILING AT HIGH SUPERHEAT
    Bhati, Jyoti
    Paruya, Swapan
    Akhtar, Farheen
    PROCEEDINGS OF 2021 28TH INTERNATIONAL CONFERENCE ON NUCLEAR ENGINEERING (ICONE28), VOL 3, 2021,
  • [39] Physical Model of a Single Bubble Growth during Nucleate Pool Boiling
    Voglar, Jure
    FLUIDS, 2022, 7 (03)
  • [40] NUCLEATE POOL BOILING HEAT TRANSFER Review of Models and Bubble Dynamics Parameters
    Stojanovic, Andrijana D.
    Belosevic, Srdjan, V
    Crnomarkovic, Nenad Dj
    Tomanovic, Ivan D.
    Milicevic, Aleksandar R.
    THERMAL SCIENCE, 2022, 26 (01): : 157 - 174