Superconvergence for discontinuous Galerkin finite element methods by L2-projection methods

被引:0
|
作者
Jari, Rabeea [1 ]
Mu, Lin [1 ]
Harris, Anna [1 ]
Fox, Lynn [1 ]
机构
[1] Univ Arkansas, Dept Appl Sci, Little Rock, AR 72204 USA
关键词
DG finite element methods; Superconvergence; L-2-projection; Elliptic problem; 2ND-ORDER ELLIPTIC PROBLEMS; PATCH RECOVERY; ERROR; APPROXIMATIONS; PROJECTIONS; EQUATIONS; GRADIENT;
D O I
10.1016/j.camwa.2012.11.013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A general superconvergence of discontinuous Galerkin (DG) finite element method for the elliptic problem is established by using L-2-projection method. Regularity assumptions for the elliptic problem with regular partitions are required. Numerical experiments are given to verify the theoretical results. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:665 / 672
页数:8
相关论文
共 50 条
  • [31] Discontinuous Galerkin immersed finite element methods for parabolic interface problems
    Yang, Qing
    Zhang, Xu
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2016, 299 : 127 - 139
  • [32] Discontinuous Galerkin finite element methods for radiative transfer in spherical symmetry
    Kitzmann, D.
    Bolte, J.
    Patzer, A. B. C.
    ASTRONOMY & ASTROPHYSICS, 2016, 595
  • [33] A medius error analysis for the conforming discontinuous Galerkin finite element methods
    Zeng, Yuping
    Zhang, Shangyou
    JOURNAL OF NUMERICAL MATHEMATICS, 2025,
  • [34] Minimal stabilization for discontinuous galerkin finite element methods for hyperbolic problems
    Burman, E.
    Stamm, B.
    JOURNAL OF SCIENTIFIC COMPUTING, 2007, 33 (02) : 183 - 208
  • [35] Discontinuous Galerkin finite element methods for the gyrokinetic-waterbag equations
    Besse, Nicolas
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2017, 37 (02) : 985 - 1040
  • [36] Discontinuous Galerkin finite element methods for radiative transfer in spherical symmetry
    Kitzmann, D.
    Bolte, J.
    Patzer, A.B.C.
    Astronomy and Astrophysics, 2016, 595
  • [37] Minimal Stabilization for Discontinuous Galerkin Finite Element Methods for Hyperbolic Problems
    E. Burman
    B. Stamm
    Journal of Scientific Computing, 2007, 33 : 183 - 208
  • [38] A coupling of mixed and discontinuous Galerkin finite-element methods for poroelasticity
    Phillips, Phillip Joseph
    Wheeler, Mary F.
    COMPUTATIONAL GEOSCIENCES, 2008, 12 (04) : 417 - 435
  • [39] A coupling of mixed and discontinuous Galerkin finite-element methods for poroelasticity
    Phillip Joseph Phillips
    Mary F. Wheeler
    Computational Geosciences, 2008, 12 : 417 - 435
  • [40] Discontinuous Deformation Analysis Coupling with Discontinuous Galerkin Finite Element Methods for Contact Simulations
    Sun, Yue
    Feng, Xiangchu
    Xiao, Jun
    Wang, Ying
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2016, 2016