Birational classification of moduli spaces of vector bundles over P2

被引:5
|
作者
Schofield, A [1 ]
机构
[1] Univ Bristol, Dept Math, Bristol BS8 1TW, Avon, England
来源
INDAGATIONES MATHEMATICAE-NEW SERIES | 2001年 / 12卷 / 03期
关键词
D O I
10.1016/S0019-3577(01)80020-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The depth of a vector bundle E over P-2 is the largest integer h such that [E]/h is in the Grothendieck group of coherent sheaves on P-2 where [E] is the class of E in this Grothendieck group. We show that a moduli space of vector bundles is birational to a suitable number of h by h matrices up to simultaneous conjugacy where h is the depth of the vector bundles classified by the moduli space. In particular, such a moduli space is a rational variety if h less than or equal to 4 and is stably rational when h divides 420.
引用
收藏
页码:433 / 448
页数:16
相关论文
共 50 条