Investigation of the influence of wetting on the particle dynamics in a fluidized bed rotor granulator by MPT measurements and CFD-DEM simulations

被引:7
|
作者
Grohn, Philipp [1 ]
Oesau, Tobias [2 ]
Heinrich, Stefan [2 ]
Antonyuk, Sergiy [1 ]
机构
[1] Tech Univ Kaiserslautern, Inst Particle Proc Engn, Gottlieb Daimler Str 44, D-67663 Kaiserslautern, Germany
[2] Hamburg Univ Technol, Inst Solids Proc Engn & Particle Technol, Denickestr 15, D-21073 Hamburg, Germany
关键词
Wet particle dynamics; Magnetic particle tracking; CFD-DEM simulations; Liquid bridge model; NUMERICAL-SIMULATION; LIQUID BRIDGE; SPOUTED BED; FLOW; SPHERONIZATION; MODEL; APPARATUS; DISCHARGE; BEHAVIOR; FORCES;
D O I
10.1016/j.powtec.2022.117736
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
In many processes, particles are coated or agglomerated. Thus, it is of considerable interest how liquid affects the particle dynamics. The production of round, coated pellets is particularly important in the pharmaceutical industry, which is why fluidized bed rotor granulators (FBRG) are often used for this process. In this work, the influence of liquid content on the particle dynamics in a FBRG was investigated experimentally by magnetic particle tracking measurements (MPT) and numerically using Computational Fluid Dynamics coupled with Discrete Element Method (CFD-DEM coupling). A liquid bridge model was implemented in the DEM contact model to take the capillary and viscous forces during wet contact of particles into account. In addition, the model considers the influence of the relative contact velocity on the maximum liquid bridge length. In order to show that numerical simulations can correctly predict the particle dynamics in the process, the non-intrusive MPT technique was used for the continuous measurement of the particle position and orientation of a single tracer particle during experiments. Thus, the residence probability, the trajectories, as well as the translational and angular velocities of the particles were determined. The simulation results agree well with the experimental measurements.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] On the treatment of bed-to-wall heat transfer in CFD-DEM simulations of gas-fluidized beds
    Liu, Xin
    Deen, Niels G.
    Tang, Yali
    CHEMICAL ENGINEERING SCIENCE, 2021, 236
  • [32] CFD-DEM modelling of particle flow in IsaMills - Comparison between simulations and PEPT measurements
    Jayasundara, C. T.
    Yang, R. Y.
    Guo, B. Y.
    Yu, A. B.
    Govender, I.
    Mainza, A.
    van der Westhuizen, A.
    Rubenstein, J.
    MINERALS ENGINEERING, 2011, 24 (3-4) : 181 - 187
  • [33] An Inlet Area for Particle Mixing in a Two-Dimensional Fluidized Bed Using a CFD-DEM Model
    Pisitsungkakarn, Sumol Sae-heng
    MATERIALS SCIENCE AND MECHANICAL ENGINEERING, 2014, 467 : 367 - 373
  • [34] CFD-DEM investigation of particle elutriation with electrostatic effects in gas-solid fluidized beds
    Yang, Yao
    Zi, Can
    Huang, Zhengliang
    Wang, Jingdai
    Lungu, Musango
    Liao, Zuwei
    Yang, Yongrong
    Su, Hongye
    POWDER TECHNOLOGY, 2017, 308 : 422 - 433
  • [35] Investigation of a bubbling fluidized bed methanation reactor by using CFD-DEM and approximate image processing method
    Li, Jiageng
    Agarwal, Ramesh K.
    Zhou, Ling
    Yang, Bolun
    CHEMICAL ENGINEERING SCIENCE, 2019, 207 : 1107 - 1120
  • [36] Particle flow characteristics in a gas-solid fluidized bed: a microscopic perspective by coupled CFD-DEM approach
    Zhao, Zhenjiang
    Bai, Ling
    Shi, Weidong
    Li, Linjian
    El-Emam, Mahmoud A.
    Agarwal, Ramesh
    Zhou, Ling
    COMPUTATIONAL PARTICLE MECHANICS, 2024, 11 (03) : 1375 - 1389
  • [37] CFD-DEM study on the mixing characteristics of binary particle systems in a fluidized bed of refuse-derived fuel
    Wang, Li-Jun
    Wei, Guang-Chao
    Duan, Shu-Ping
    Hou, Qin-Fu
    PARTICULATE SCIENCE AND TECHNOLOGY, 2019, 37 (01) : 51 - 59
  • [38] CFD-DEM APPROACH TO CALCULATE THE FLOW AND HEAT TRANSFER BEHAVIORS IN FLUIDIZED BED WITH IMMERSED TUBE AT PARTICLE SCALE
    Raj, Naveen N.
    Vengadesan, S.
    Tafti, Danesh K.
    4TH THERMAL AND FLUIDS ENGINEERING CONFERENCE, ASTFE 2019, 2019,
  • [39] Particle convective heat transfer near the wall in a supercritical water fluidized bed by single particle model coupled with CFD-DEM
    Zhang, Tianning
    Wan, Zhen
    Lu, Youjun
    PARTICUOLOGY, 2023, 73 : 47 - 58
  • [40] Particle convective heat transfer near the wall in a supercritical water fluidized bed by single particle model coupled with CFD-DEM
    Zhang, Tianning
    Wan, Zhen
    Lu, Youjun
    PARTICUOLOGY, 2023, 73 (47-58): : 47 - 58