The convergence ball of Wang's method for finding a zero of a derivative

被引:6
|
作者
Wu, Qingbiao [1 ]
Ren, Hongmin [2 ]
Bi, Weihong [1 ]
机构
[1] Zhejiang Univ, Dept Math, Hangzhou 310027, Zhejiang, Peoples R China
[2] Hangzhou Radio & TV Univ, Coll Informat & Engn, Hangzhou 310012, Zhejiang, Peoples R China
关键词
Wang's method; Nonlinear equation; Convergence ball; Estimate of radius; Error analysis; SECANT METHOD;
D O I
10.1016/j.mcm.2008.04.002
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Under the hypotheses that the third-order and fourth-order derivatives of function f are bounded, an estimate of the radius of the convergence ball of Wang's method is obtained. The error analysis is also given. Finally, two numerical examples are provided to show applications of our theorem. (c) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:740 / 744
页数:5
相关论文
共 50 条
  • [11] Convergence ball and error analysis of Muller's method
    Wu, Qingbiao
    Ren, Hongmin
    Bi, Weihong
    APPLIED MATHEMATICS AND COMPUTATION, 2007, 184 (02) : 464 - 470
  • [12] Extended convergence ball for an efficient eighth order method using only the first derivative
    Argyros I.K.
    Sharma D.
    Argyros C.I.
    Parhi S.K.
    Sunanda S.K.
    SeMA Journal, 2023, 80 (2) : 319 - 331
  • [13] ALGORITHM WITH GUARANTEED CONVERGENCE FOR FINDING A ZERO OF A FUNCTION
    BRENT, RP
    COMPUTER JOURNAL, 1971, 14 (04): : 422 - &
  • [14] Ball convergence theorems for Halley's method in Banach space
    Argyros, Ioannis K.
    Ren, Hongmin
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2012, 38 (1-2) : 453 - 465
  • [15] Ball convergence theorems for Halley’s method in Banach space
    Ioannis K. Argyros
    Hongmin Ren
    Journal of Applied Mathematics and Computing, 2012, 38 (1-2) : 453 - 465
  • [16] Improved Convergence Ball and Error Analysis of Muller's Method
    Argyros, Ioannis K.
    Gonzalez, Daniel
    Ren, Hongmin
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2022, 40
  • [17] An excellent derivative-free multiple-zero finding numerical technique of optimal eighth order convergence
    Sharma J.R.
    Kumar S.
    ANNALI DELL'UNIVERSITA' DI FERRARA, 2022, 68 (1) : 161 - 186
  • [18] Extended ball convergence of a seventh order derivative free method for solving system of equations with applications
    Argyros, Ioannis K.
    Sharma, Debasis
    Argyros, Christopher, I
    Parhi, Sanjaya Kumar
    Argyros, Michael, I
    JOURNAL OF ANALYSIS, 2023, 31 (01): : 279 - 294
  • [19] Extended ball convergence of a seventh order derivative free method for solving system of equations with applications
    Ioannis K. Argyros
    Debasis Sharma
    Christopher I. Argyros
    Sanjaya Kumar Parhi
    Michael I. Argyros
    The Journal of Analysis, 2023, 31 : 279 - 294
  • [20] On Second Derivative-Free Zero Finding Methods
    Hasan, Mohammed A.
    2010 AMERICAN CONTROL CONFERENCE, 2010, : 6507 - 6512