Estimating Forest Site Productivity Using Spatial Interpolation

被引:1
|
作者
Bridges, Christopher A. [1 ]
机构
[1] Tennessee Dept Environm & Conservat, Sardis, TN 38371 USA
来源
SOUTHERN JOURNAL OF APPLIED FORESTRY | 2008年 / 32卷 / 04期
关键词
forest site assessment; GIS; spatial analysis; kriging; Tennessee;
D O I
10.1093/sjaf/32.4.187
中图分类号
S7 [林业];
学科分类号
0829 ; 0907 ;
摘要
Highly productive timberland is threatened in many areas throughout the Southeastern United States. Tools are needed that can provide reliable, landscape-level estimates of forest site productivity. This technical note describes a simple technique that integrates Forest Inventory and Analysis data with spatial interpolation methods to map regional forest site productivity. A case study of West Tennessee timberland indicates that highly productive forest sites may be associated with the conditions of West Tennesse bottomlands. Results illustrate the applicability of this method of the study of timber supply, land resource analysis, and regional forest conservation planning. Future research will evaluate the consistency between this and other methods of site assessment.
引用
收藏
页码:187 / 189
页数:3
相关论文
共 50 条
  • [21] Estimating regional forest productivity and water yield using an ecosystem model linked to a GIS
    Ollinger, SV
    Aber, JD
    Federer, CA
    LANDSCAPE ECOLOGY, 1998, 13 (05) : 323 - 334
  • [22] ESTIMATING FOREST PRODUCTIVITY WITH THEMATIC MAPPER AND BIOGEOGRAPHICAL DATA
    COOK, EA
    IVERSON, LR
    GRAHAM, RL
    REMOTE SENSING OF ENVIRONMENT, 1989, 28 : 131 - &
  • [23] Predicting the spatial distribution of seabed gravel content using random forest, spatial interpolation methods and their hybrid methods
    Li, J.
    20TH INTERNATIONAL CONGRESS ON MODELLING AND SIMULATION (MODSIM2013), 2013, : 394 - 400
  • [24] Estimating deciduous broadleaf forest gross primary productivity by remote sensing data using a random forest regression model
    Chen, Yue
    Shen, Wei
    Gao, Shuai
    Zhang, Kun
    Wang, Jian
    Huang, Ni
    JOURNAL OF APPLIED REMOTE SENSING, 2019, 13 (03)
  • [25] Spatial interpolation methods for estimating monthly rainfall distribution in Thailand
    Chutsagulprom, N.
    Chaisee, K.
    Wongsaijai, B.
    Inkeaw, P.
    Oonariya, C.
    THEORETICAL AND APPLIED CLIMATOLOGY, 2022, 148 (1-2) : 317 - 328
  • [26] Comparison of spatial interpolation methods for estimating the precipitation distribution in Portugal
    Alexandru Antal
    Pedro M. P. Guerreiro
    Sorin Cheval
    Theoretical and Applied Climatology, 2021, 145 : 1193 - 1206
  • [27] Spatial interpolation methods for estimating monthly rainfall distribution in Thailand
    N. Chutsagulprom
    K. Chaisee
    B. Wongsaijai
    P. Inkeaw
    C. Oonariya
    Theoretical and Applied Climatology, 2022, 148 : 317 - 328
  • [28] Comparison of spatial interpolation methods for estimating the precipitation distribution in Portugal
    Antal, Alexandru
    Guerreiro, Pedro M. P.
    Cheval, Sorin
    THEORETICAL AND APPLIED CLIMATOLOGY, 2021, 145 (3-4) : 1193 - 1206
  • [29] Estimating forest cover in a boreal forest test site using thematic mapper data from two dates
    Gemmell, F
    Vajo, J
    Strandstrom, M
    REMOTE SENSING OF ENVIRONMENT, 2001, 77 (02) : 197 - 211
  • [30] NUTRITIONAL CONSEQUENCES OF INTENSIVE FOREST HARVESTING ON SITE PRODUCTIVITY
    DYCK, WJ
    MEES, CA
    BIOMASS, 1990, 22 (1-4): : 171 - 186