On the radiality of constrained minimizers to the Schrodinger-Poisson-Slater energy

被引:19
|
作者
Georgiev, Vladimir [1 ]
Prinari, Francesca [2 ]
Visciglia, Nicola [1 ]
机构
[1] Univ Pisa, Dipartimento Matemat, I-56124 Pisa, Italy
[2] Univ Ferrara, Dipartimento Matemat, I-44100 Ferrara, Italy
关键词
GROUND-STATES; STABILITY; SYMMETRY; UNIQUENESS; EXISTENCE;
D O I
10.1016/j.anihpc.2011.12.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the radial symmetry of minimizers to the Schrodinger Poisson Slater (S-P-S) energy: inf (u is an element of H1 (R3) parallel to u parallel to L2(R3)=rho) 1/2 integral(R3) vertical bar del u(x)vertical bar(2)vertical bar+ 1/4 integral(R3) integral(R3) vertical bar u(x)vertical bar(2)vertical bar u(y)vertical bar(2)/x-y vertical bar dxdy - 1/p integral(R3) integral(R3)vertical bar u vertical bar(p)dx provided that 2 < p < 3 and rho is small. The main result shows that minimizers are radially symmetric modulo suitable translation. (C) 2012 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:369 / 376
页数:8
相关论文
共 50 条
  • [41] VOLUME CONSTRAINED MINIMIZERS OF THE FRACTIONAL PERIMETER WITH A POTENTIAL ENERGY
    Cesaroni, Annalisa
    Novaga, Matteo
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2017, 10 (04): : 715 - 727
  • [42] Ground state solutions for a Schrodinger-Poisson-Slater-type equation with critical growth
    Zhang, Jiafeng
    Lei, Chunyu
    Lei, Jun
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (12) : 7443 - 7450
  • [43] REFINED SPIKE PROFILES OF CONSTRAINT MINIMIZERS FOR THE PLANAR SCHRODINGER-POISSON SYSTEM WITH LOGARITHMIC POTENTIALS
    Guo, Yujin
    Liang, Wenning
    Li, Yan
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2024, 44 (01) : 182 - 204
  • [44] Symmetry of constrained minimizers of the Cahn-Hilliard energy on the torus
    Gelantalis, Michael
    Wagner, Alfred
    Westdickenberg, Maria G.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 197
  • [45] CONSTRAINED SCHRODINGER-POISSON SYSTEM WITH NON-CONSTANT INTERACTION
    Pisani, Lorenzo
    Siciliano, Gaetano
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2013, 15 (01)
  • [46] Ground states for the planar NLSE with a point defect as minimizers of the constrained energy
    Adami, Riccardo
    Boni, Filippo
    Carlone, Raffaele
    Tentarelli, Lorenzo
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2022, 61 (05)
  • [47] Energy formulae for fractional Schrodinger-Poisson system
    Xiao, Jie
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 331 : 50 - 69
  • [48] Global minimizers for the doubly-constrained Helfrich energy: the axisymmetric case
    Rustum Choksi
    Marco Veneroni
    Calculus of Variations and Partial Differential Equations, 2013, 48 : 337 - 366
  • [49] Ground states for the planar NLSE with a point defect as minimizers of the constrained energy
    Riccardo Adami
    Filippo Boni
    Raffaele Carlone
    Lorenzo Tentarelli
    Calculus of Variations and Partial Differential Equations, 2022, 61
  • [50] Global minimizers for the doubly-constrained Helfrich energy: the axisymmetric case
    Choksi, Rustum
    Veneroni, Marco
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2013, 48 (3-4) : 337 - 366