Responses of aerobically grown iron chlorosis tolerant and susceptible rice (Oryza sativa L.) genotypes to soil iron management in an Inceptisol

被引:5
|
作者
Nogiya, Mahaveer [1 ]
Pandey, Raghu Nath [1 ]
Singh, Bhupinder [2 ]
Singh, Geeta [3 ]
Meena, Mahesh Chand [1 ]
Datta, Samar C. [1 ]
Pradhan, Sanatan [4 ]
Meena, Amrit Lal [5 ]
机构
[1] ICAR Indian Agr Res Inst, Div Soil Sci & Agr Chem, New Delhi, India
[2] ICAR Indian Agr Res Inst, Nucl Res Lab, CESCRA, New Delhi, India
[3] ICAR Indian Agr Res Inst, Div Microbiol, New Delhi, India
[4] ICAR Indian Agr Res Inst, Div Agr Phys, New Delhi, India
[5] ICAR Indian Inst Farming Syst Res, Modipuram, India
关键词
Aerobic rice; chlorophyll content; Fe deficiency; rice genotypes; leaf greenness index (SPAD); DEFICIENCY; EFFICIENCY; RELEASE; ZINC; FE;
D O I
10.1080/03650340.2019.1566709
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Iron deficiency is a serious nutritional disorder in aerobic rice, causing chlorosis, poor yields and reduced grain nutritional quality. The problem can be managed by complementing the use of Fe-efficient plant type with a suitable Fe management strategy. In the present paper, we report the effect of eight iron management practices to resolve the problem of iron (Fe) chlorosis through the use of an iron deficiency tolerant (IDTR) and iron deficiency susceptible (IDSR) rice genotype, i.e. Pusa 33 and ADT 39, respectively. Fe deficiency tolerance of these genotypes was related to the root release of PS which enabled a higher uptake of Fe in the IDTR than the IDSR under Fe deficiency. In general, IDTR performed better than the IDSR as evident from a significant increase in total iron, active iron, chlorophyll content and grain and straw yield. IDSR produced the highest grain and straw yield under slow iron release nano clay complex source. Grain Fe content of the IDTR and IDSR increased by 18.9 and 13.4%, respectively, under recommended dose of Fe. The results identified the most effective soil management strategies for the alleviating Fe deficiency chlorosis and improving Fe nutrition of both IDTR and IDSR genotypes.
引用
收藏
页码:1387 / 1400
页数:14
相关论文
共 50 条
  • [31] Nutritional evaluation of basmati rice (Oryza sativa L.) genotypes
    Deka, SC
    Sood, DR
    Gupta, KR
    JOURNAL OF FOOD SCIENCE AND TECHNOLOGY-MYSORE, 2000, 37 (03): : 272 - 276
  • [32] Nutritional evaluation of basmati rice (Oryza sativa L.) genotypes
    Deka, S.C.
    Sood, D.R.
    Gupta, K.R.
    Journal of Food Science and Technology, 2000, 37 (03) : 272 - 276
  • [33] Effect of Zero-Valent Iron on Arsenic Uptake by Rice (Oryza sativa L.) and its Relationship with Iron, Arsenic, and Phosphorus in Soil and Iron Plaque
    Hu, Liqiong
    Zeng, Min
    Lei, Ming
    Liao, Bohan
    Zhou, Hang
    WATER AIR AND SOIL POLLUTION, 2020, 231 (09):
  • [34] Effect of Zero-Valent Iron on Arsenic Uptake by Rice (Oryza sativa L.) and its Relationship with Iron, Arsenic, and Phosphorus in Soil and Iron Plaque
    Liqiong Hu
    Min Zeng
    Ming Lei
    Bohan Liao
    Hang Zhou
    Water, Air, & Soil Pollution, 2020, 231
  • [35] Arsenic accumulation by 20 different genotypes of rice (Oryza sativa L.) as affected by radial oxygen loss and iron plaque
    Wu, C.
    Wong, M. H.
    Ye, Z. H.
    Shu, W. S.
    Zhu, Y. G.
    ARSENIC IN GEOSPHERE AND HUMAN DISEASES, 2010, : 576 - 578
  • [36] Biochar decreases Cd mobility and rice (Oryza sativa L.) uptake by affecting soil iron and sulfur cycling
    Wang, Jingbo
    Yuan, Rui
    Zhang, Yuhao
    Si, Tianren
    Li, Hao
    Duan, Huatai
    Li, Lianqing
    Pan, Genxing
    Science of the Total Environment, 2022, 836
  • [37] Biochar decreases Cd mobility and rice (Oryza sativa L.) uptake by affecting soil iron and sulfur cycling
    Wang, Jingbo
    Yuan, Rui
    Zhang, Yuhao
    Si, Tianren
    Li, Hao
    Duan, Huatai
    Li, Lianqing
    Pan, Genxing
    SCIENCE OF THE TOTAL ENVIRONMENT, 2022, 836
  • [38] Physiological responses of two rice (Oryza sativa L.) genotypes to chilling stress at seedling stage
    Aghaee, A.
    Moradi, F.
    Zare-Maivan, H.
    Zarinkamar, F.
    Irandoost, H. Pour
    Sharifi, P.
    AFRICAN JOURNAL OF BIOTECHNOLOGY, 2011, 10 (39): : 7617 - 7621
  • [39] Responses of Contrasting Rice (Oryza sativa L.) Genotypes to Salt Stress as Affected by Nutrient Concentrations
    Zhang Zhen-hua
    Liu Qiang
    Song Hai-xing
    Rong Xiang-min
    Ismail, Abdelbagi M.
    AGRICULTURAL SCIENCES IN CHINA, 2011, 10 (02): : 195 - 206
  • [40] Responses of Contrasting Rice (Oryza sativa L.) Genotypes to Salt Stress as Affected by Nutrient Concentrations
    Abdelbagi M Ismail
    Agricultural Sciences in China, 2011, 10 (02) : 195 - 206