The Curved N-Body Problem: Risks and Rewards

被引:13
|
作者
Diacu, Florin [1 ,2 ]
机构
[1] Univ Victoria, Pacific Inst Math Sci, Victoria, BC V8W 3R4, Canada
[2] Univ Victoria, Dept Math & Stat, Victoria, BC V8W 3R4, Canada
来源
MATHEMATICAL INTELLIGENCER | 2013年 / 35卷 / 03期
关键词
CONSTANT CURVATURE; HOMOGRAPHIC SOLUTIONS; INTRINSIC APPROACH; EUCLIDEAN NATURE; GAUSS EXPERIMENT; SPACES; CONJECTURE; MYTH;
D O I
10.1007/s00283-013-9397-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:24 / 33
页数:10
相关论文
共 50 条
  • [1] The Curved N-Body Problem: Risks and Rewards
    Florin Diacu
    The Mathematical Intelligencer, 2013, 35 : 24 - 33
  • [2] Rotopulsators of the curved N-body problem
    Diacu, Florin
    Kordlou, Shima
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 255 (09) : 2709 - 2750
  • [3] ON THE SINGULARITIES OF THE CURVED n-BODY PROBLEM
    Diacu, Florin
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 363 (04) : 2249 - 2264
  • [4] Central Configurations of the Curved N-Body Problem
    Diacu, Florin
    Stoica, Cristina
    Zhu, Shuqiang
    JOURNAL OF NONLINEAR SCIENCE, 2018, 28 (05) : 1999 - 2046
  • [5] Polygonal rotopulsators of the curved n-body problem
    Tibboel, Pieter
    JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (02)
  • [6] Central Configurations of the Curved N-Body Problem
    Florin Diacu
    Cristina Stoica
    Shuqiang Zhu
    Journal of Nonlinear Science, 2018, 28 : 1999 - 2046
  • [7] POLYGONAL HOMOGRAPHIC ORBITS OF THE CURVED n-BODY PROBLEM
    Diacu, Florin
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 364 (05) : 2783 - 2802
  • [8] The Newtonian n-Body Problem in the Context of Curved Space
    Diacu, Florin
    EXTENDED ABSTRACTS SPRING 2014: HAMILTONIAN SYSTEMS AND CELESTIAL MECHANICS; VIRUS DYNAMICS AND EVOLUTION, 2015, : 23 - 26
  • [9] The Classical N-body Problem in the Context of Curved Space
    Diacu, Florin
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2017, 69 (04): : 790 - 806
  • [10] Relative equilibria for the positive curved n-body problem
    Perez-Chavela, Ernesto
    Sanchez-Cerritos, Juan Manuel
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2020, 82