Heating and current drive by ion cyclotron waves in the activated phase of ITER

被引:39
|
作者
Dumont, R. J. [1 ]
Zarzoso, D. [1 ]
机构
[1] IRFM, CEA, F-13108 St Paul Les Durance, France
关键词
DIII-D TOKAMAK; JET TOKAMAK; PLASMAS; ABSORPTION; MINORITY; REGIMES;
D O I
10.1088/0029-5515/53/1/013002
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Waves in the ion cyclotron range of frequency (ICRF) are expected to play a central role in the heating of ITER plasmas during deuterium (D)-tritium (T) operation. These waves can also be used to drive current by direct electron damping of the fast wave, provided an appropriate antenna phasing is used. The corresponding current profile is peaked near the magnetic axis, and can have a beneficial effect on the discharge stability and performance. In this paper, two scenarios applicable during the activated phase of ITER operation are compared: second harmonic tritium heating and minority helium-3 heating, which differ in the addition of a small fraction of He-3 ions (2%) in the DT mixture for the latter. The resulting change of the dominant ICRF heating scheme causes the discharge properties to differ appreciably. In this paper, a full-wave code is coupled to a Fokker-Planck solver and a current drive module to investigate in detail the effect of ICRF waves on the discharge. The impact of phasing on the scenario in terms of plasma heating and current drive efficiency is studied by simulating ICRF heating with various antenna toroidal spectra. It is found that despite a lower current drive efficiency, the addition of 3He in the discharge increases the single-pass absorption rate, the ion heating fraction, and makes the scenario essentially immune to details in the toroidal phasing and fast ion properties.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Status of Transmission Line and Matching Network Design and Testing for the ITER Ion Cyclotron Heating and Current Drive System
    Goulding, R. H.
    McCarthy, M. P.
    Rasmussen, D. A.
    Swain, D. W.
    Barber, G. C.
    Barbier, C. N.
    Campbell, I. H.
    Fredd, E.
    Gray, S. L.
    Greenough, N.
    Moon, R. L.
    Pesavento, P. V.
    Peters, R. B.
    Sanabria, R. M.
    Sparks, D. O.
    Wolframe, W. J.
    RADIOFREQUENCY POWER IN PLASMAS, 2014, 1580 : 370 - 373
  • [22] Heating and current drive regimes in the ion cyclotron range of frequency
    Becoulet, A
    PLASMA PHYSICS AND CONTROLLED FUSION, 1996, 38 (12A) : A1 - A11
  • [23] A remotely steered millimetre wave launcher for electron cyclotron heating and current drive on ITER
    Bongers, W. A.
    Graswinckel, M. F.
    Goede, A. P. H.
    Kasparek, W.
    Danilov, I.
    Fernandez Curto, A.
    de Baar, M. R.
    van den Berg, M. A.
    Donne, A. J. H.
    Elzendoorn, B. S. Q.
    Heidinger, R.
    Ivanov, P.
    Kruijt, O. G.
    Lamers, B.
    Meier, A.
    Piosczyk, B.
    Plaum, B.
    Ronden, D. M. S.
    Thoen, D. J.
    Schmid, M.
    Verhoeven, A. G. A.
    FUSION ENGINEERING AND DESIGN, 2010, 85 (01) : 69 - 86
  • [24] THE ENGINEERING ANALYSIS IN SUPPORT OF THE ITER ELECTRON CYCLOTRON HEATING AND CURRENT DRIVE TRANSMISSION LINES
    Ronden, D. M. S.
    Henderson, M. A.
    Becket, B.
    Bigelow, T.
    Caughman, J.
    Darbos, C.
    Gandini, F.
    Nazare, C.
    Rasmussen, D.
    Udintsev, V.
    FUSION SCIENCE AND TECHNOLOGY, 2011, 59 (04) : 718 - 728
  • [25] ITER ion cyclotron heating and fueling systems
    Rasmussen, DA
    Baylor, LR
    Combs, SK
    Fredd, E
    Goulding, RH
    Hosea, J
    Swain, DW
    FUSION SCIENCE AND TECHNOLOGY, 2005, 47 (03) : 753 - 757
  • [26] Finite orbit width effects on ion cyclotron heating and current drive
    Hellsten, T
    Carlsson, J
    Eriksson, LG
    Hedin, J
    Mantsinen, M
    THEORY OF FUSION PLASMAS, 1999, 18 : 131 - 144
  • [27] Electron cyclotron heating and current drive
    Westerhof, E
    FUSION TECHNOLOGY, 1998, 33 (2T): : 235 - 240
  • [28] Electron cyclotron heating and current drive
    Westerhof, E
    FUSION TECHNOLOGY, 1996, 29 (2T): : 252 - 257
  • [29] Electron cyclotron heating and current drive
    FOM-Instituut voor Plasmafysica, 'Rijnhuizen', Nieuwegein, Netherlands
    Fusion Technol, 2 T (235-240):
  • [30] Design modification of ITER equatorial EC launcher for electron cyclotron heating and current drive optimization
    Takahashi, K.
    Abe, G.
    Kajiwara, K.
    Oda, Y.
    Isozaki, M.
    Ikeda, R.
    Sakamoto, K.
    Omori, T.
    Henderson, M.
    FUSION ENGINEERING AND DESIGN, 2015, 96-97 : 602 - 606