A cooperative spectrum sensing method based on information geometry and fuzzy c-means clustering algorithm

被引:25
|
作者
Zhang, Shunchao [1 ]
Wang, Yonghua [1 ,2 ]
Li, Jiangfan [1 ]
Wan, Pin [1 ,3 ]
Zhang, Yongwei [1 ]
Li, Nan [1 ]
机构
[1] Guangdong Univ Technol, Sch Automat, Guangzhou 510006, Guangdong, Peoples R China
[2] Chinese Acad Sci, Inst Automat, State Key Lab Management & Control Complex Syst, Beijing 100190, Peoples R China
[3] South Cent Univ Nationalities, Hubei Key Lab Intelligent Wireless Commun, Wuhan 430074, Hubei, Peoples R China
关键词
Cooperative spectrum sensing; Information geometry; Decomposition and recombination; Fuzzy c-means clustering algorithm;
D O I
10.1186/s13638-019-1338-z
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
To improve spectrum sensing performance, a cooperative spectrum sensing method based on information geometry and fuzzy c-means clustering algorithm is proposed in this paper. In the process of signal feature extraction, a feature extraction method combining decomposition, recombination, and information geometry is proposed. First, to improve the spectrum sensing performance when the number of cooperative secondary users is small, the signals collected by the secondary users are split and reorganized, thereby logically increasing the number of cooperative secondary users. Then, in order to visually analyze the signal detection problem, the information geometry theory is used to map the split and recombine signals onto the manifold, thereby transforming the signal detection problem into a geometric problem. Further, use geometric tools to extract the corresponding statistical characteristics of the signal. Finally, according to the extracted features, the appropriate classifier is trained by the fuzzy c-means clustering algorithm and used for spectrum sensing, thus avoiding complex threshold derivation. In the simulation results and performance analysis section, the experimental results were further analyzed, and the results show that the proposed method can effectively improve the spectrum sensing performance.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] A new fuzzy relational clustering algorithm based on the fuzzy C-means algorithm
    Corsini, P
    Lazzerini, B
    Marcelloni, F
    SOFT COMPUTING, 2005, 9 (06) : 439 - 447
  • [22] A new fuzzy relational clustering algorithm based on the fuzzy C-means algorithm
    P. Corsini
    B. Lazzerini
    F. Marcelloni
    Soft Computing, 2005, 9 : 439 - 447
  • [23] Lightning location method based on improved fuzzy C-means clustering algorithm
    Li, Tao
    Chen, Jie
    Wang, Lina
    Ren, Yongjun
    INTERNATIONAL JOURNAL OF SENSOR NETWORKS, 2021, 35 (03) : 133 - 142
  • [24] A C-means clustering based fuzzy modeling method
    Chang, XG
    Li, W
    Farrell, J
    NINTH IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE 2000), VOLS 1 AND 2, 2000, : 937 - 940
  • [25] A Kernelized Fuzzy C-means Clustering Algorithm based on Bat Algorithm
    Cheng, Chunying
    Bao, Chunhua
    PROCEEDINGS OF 2018 10TH INTERNATIONAL CONFERENCE ON COMPUTER AND AUTOMATION ENGINEERING (ICCAE 2018), 2018, : 1 - 5
  • [26] Comments on "A Robust Fuzzy Local Information C-Means Clustering Algorithm"
    Celik, Turgay
    Lee, Hwee Kuan
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2013, 22 (03) : 1258 - 1261
  • [27] A Kernel Fuzzy C-means Clustering Algorithm Based on Firefly Algorithm
    Cheng, Chunying
    Bao, Chunhua
    ADVANCES IN NEURAL NETWORKS - ISNN 2019, PT I, 2019, 11554 : 463 - 468
  • [28] A possibilistic fuzzy c-means clustering algorithm
    Pal, NR
    Pal, K
    Keller, JM
    Bezdek, JC
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2005, 13 (04) : 517 - 530
  • [29] An efficient Fuzzy C-Means clustering algorithm
    Hung, MC
    Yang, DL
    2001 IEEE INTERNATIONAL CONFERENCE ON DATA MINING, PROCEEDINGS, 2001, : 225 - 232
  • [30] An Improved Fuzzy C-means Clustering Algorithm
    Duan, Lingzi
    Yu, Fusheng
    Zhan, Li
    2016 12TH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION, FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY (ICNC-FSKD), 2016, : 1199 - 1204