NEW NUMERICAL APPROXIMATIONS FOR SPACE-TIME FRACTIONAL BURGERS' EQUATIONS VIA A LEGENDRE SPECTRAL-COLLOCATION METHOD

被引:0
|
作者
Bhrawy, A. H. [1 ,2 ]
Zaky, M. A. [3 ]
Baleanu, D. [4 ,5 ,6 ]
机构
[1] King Abdulaziz Univ, Fac Sci, Dept Math, Jeddah, Saudi Arabia
[2] Beni Suef Univ, Dept Math, Fac Sci, Bani Suwayf, Egypt
[3] Natl Res Ctr, Dept Theoret Phys, Cairo, Egypt
[4] King Abdulaziz Univ, Fac Engn, Dept Chem & Mat Engn, Jeddah 21589, Saudi Arabia
[5] Cankaya Univ, Fac Art & Sci, Dept Math & Comp Sci, Ankara, Turkey
[6] Inst Plant Sci, RO-077125 Magurele, Romania
关键词
Fractional Burgers' equation; Collocation method; Shifted Legendre polynomials; Operational matrix; Caputo derivative; FINITE-DIFFERENCE METHODS; HOMOTOPY ANALYSIS METHOD; DIFFUSION;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Burgers' equation is a fundamental partial differential equation in fluid mechanics. This paper reports a new space-time spectral algorithm for obtaining an approximate solution for the space-time fractional Burgers' equation (FBE) based on spectral shifted Legendre collocation (SLC) method in combination with the shifted Legendre operational matrix of fractional derivatives. The fractional derivatives are described in the Caputo sense. We propose a spectral shifted Legendre collocation method in both temporal and spatial discretizations for the space-time FBE. The main characteristic behind this approach is that it reduces such problem to that of solving a system of nonlinear algebraic equations that can then be solved using Newton's iterative method. Numerical results with comparisons are given to confirm the reliability of the proposed method for FBE.
引用
收藏
页码:340 / 349
页数:10
相关论文
共 50 条
  • [31] A space-time spectral Petrov-Galerkin method for nonlinear time fractional Korteweg-de Vries-Burgers equations
    Yu, Zhe
    Sun, Jiebao
    Wu, Boying
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (06) : 4348 - 4365
  • [32] Application of a Legendre collocation method to the space-time variable fractional-order advection-dispersion equation
    Mallawi, F.
    Alzaidy, J. F.
    Hafez, R. M.
    JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE, 2019, 13 (01): : 324 - 330
  • [33] A space-time Legendre spectral tau method for the two-sided space-time Caputo fractional diffusion-wave equation
    A. H. Bhrawy
    M. A. Zaky
    R. A. Van Gorder
    Numerical Algorithms, 2016, 71 : 151 - 180
  • [34] Legendre Collocation Spectral Method for Solving Space Fractional Nonlinear Fisher's Equation
    Liu, Zeting
    Lv, Shujuan
    Li, Xiaocui
    THEORY, METHODOLOGY, TOOLS AND APPLICATIONS FOR MODELING AND SIMULATION OF COMPLEX SYSTEMS, PT I, 2016, 643 : 245 - 252
  • [35] A space-time Legendre spectral tau method for the two-sided space-time Caputo fractional diffusion-wave equation
    Bhrawy, A. H.
    Zaky, M. A.
    Van Gorder, R. A.
    NUMERICAL ALGORITHMS, 2016, 71 (01) : 151 - 180
  • [36] Numerical inversion of reaction parameter for a time-fractional diffusion equation by Legendre spectral collocation and mollification method
    Zhang, Wen
    Ding, Zirong
    Wang, Zewen
    Ruan, Zhousheng
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2022, 128 : 188 - 197
  • [37] The generalized Kudryashov method for nonlinear space-time fractional partial differential equations of Burgers type
    Gaber, A. A.
    Aljohani, A. F.
    Ebaid, A.
    Tenreiro Machado, J.
    NONLINEAR DYNAMICS, 2019, 95 (01) : 361 - 368
  • [38] A SPECTRAL LEGENDRE-GAUSS-LOBATTO COLLOCATION METHOD FOR A SPACE-FRACTIONAL ADVECTION DIFFUSION EQUATIONS WITH VARIABLE COEFFICIENTS
    Bhrawy, A. H.
    Baleanu, D.
    REPORTS ON MATHEMATICAL PHYSICS, 2013, 72 (02) : 219 - 233
  • [39] Fast finite difference/Legendre spectral collocation approximations for a tempered time-fractional diffusion equation
    Hu, Zunyuan
    Li, Can
    Guo, Shimin
    AIMS MATHEMATICS, 2024, 9 (12): : 34647 - 34673
  • [40] NEW FAMILIES OF SOLUTIONS FOR THE SPACE-TIME FRACTIONAL BURGERS' EQUATION
    Hassaballa, Abaker A.
    Adam, Ahmed M. A.
    Yousif, Eltayeb A.
    Nouh, Mohamed, I
    JOURNAL OF SCIENCE AND ARTS, 2022, (04): : 919 - 934