Complex uniform rotundity in symmetric spaces of measurable operators

被引:0
|
作者
Czerwinska, M. M. [1 ]
机构
[1] Univ Mississippi, Dept Math, University, MS 38677 USA
关键词
Symmetric spaces of measurable operators; Unitary matrix spaces; Complex uniform rotundity; Uniform monotonicity of a norm; Uniform Kadec-Klee property with respect to a local convergence in measure; CONVEXITY; MONOTONICITY; STRICT;
D O I
10.1016/j.jmaa.2012.05.046
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let M be a semifinite von Neumann algebra with a faithful, normal, semifinite trace tau and E be a symmetric Banach function space on [0, tau(1)). We show that E is complex uniformly rotund if and only if E(M, tau)(+) is complex uniformly rotund. Moreover, under the assumption that E is p-convex for some p > 1, complex uniform rotundity of E implies complex uniform rotundity of E(M, tau). Therefore if E has non-trivial convexity, complex uniform convexity of E is equivalent with complex uniform convexity of E(M, tau). We obtain an analogous result for the unitary matrix space C-E and a symmetric Banach sequence space E. From the above we conclude that E(M, tau)(+) is complex uniformly rotund if and only if its norm parallel to.parallel to(E(M.tau)) is uniformly monotone. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:501 / 508
页数:8
相关论文
共 50 条
  • [21] The kadec-klee property in symmetric spaces of measurable operators
    V. I. Chilin
    P. G. Dodds
    F. A. Sukochev
    Israel Journal of Mathematics, 1997, 97 : 203 - 219
  • [22] k-Extreme Points in Symmetric Spaces of Measurable Operators
    M. M. Czerwińska
    A. Kamińska
    Integral Equations and Operator Theory, 2015, 82 : 189 - 222
  • [23] The Kadec-Klee property in symmetric spaces of measurable operators
    Chilin, VI
    Dodds, PG
    Sukochev, FA
    ISRAEL JOURNAL OF MATHEMATICS, 1997, 97 (1) : 203 - 219
  • [24] On weak* convergent sequences in duals of symmetric spaces of τ-measurable operators
    de Pagter, B.
    Dodds, P. G.
    Sukochev, F. A.
    ISRAEL JOURNAL OF MATHEMATICS, 2017, 222 (01) : 125 - 164
  • [25] EXPOSED AND STRONGLY EXPOSED POINTS IN SYMMETRIC SPACES OF MEASURABLE OPERATORS
    Czerwinska, M. M.
    Kaminska, A.
    Kubiak, D.
    HOUSTON JOURNAL OF MATHEMATICS, 2013, 39 (03): : 823 - 852
  • [26] ROTUNDITY AND UNIFORM ROTUNDITY OF ORLICZ-LORENTZ SPACES WITH THE ORLICZ NORM
    Wang, Jincai
    Chen, Yi
    HOUSTON JOURNAL OF MATHEMATICS, 2012, 38 (01): : 131 - 151
  • [27] THE CRITERIA FOR LOCAL UNIFORM ROTUNDITY OF ORLICZ SPACES
    KAMINSKA, A
    STUDIA MATHEMATICA, 1984, 79 (03) : 201 - 215
  • [28] MEASURABLE UNIFORM SPACES
    FROLIK, Z
    PACIFIC JOURNAL OF MATHEMATICS, 1974, 55 (01) : 93 - 105
  • [29] Uniform Rotundity and k-Uniform Rotundity in Musielak-Orlicz-Bochner Function Spaces and Applications
    Shang, Shaoqiang
    Cui, Yunan
    JOURNAL OF CONVEX ANALYSIS, 2015, 22 (03) : 747 - 768
  • [30] Weakly* Uniform Rotundity of Orlicz Sequence Spaces
    李岩红
    王廷辅
    Northeastern Mathematical Journal, 1998, (02) : 69 - 76