A spline smoothing Newton method for finite minimax problems

被引:3
|
作者
Dong, Li [1 ,2 ]
Yu, Bo [1 ]
机构
[1] Dalian Univ Technol, Sch Math Sci, Dalian, Liaoning, Peoples R China
[2] Dalian Nationalities Univ, Coll Sci, Dalian, Liaoning, Peoples R China
基金
中国国家自然科学基金;
关键词
Cubic spline; Finite minimax problem; Smoothing technique; Stabilized Newton method; OPTIMIZATION; ALGORITHM; DESIGN;
D O I
10.1007/s10665-014-9733-2
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A spline smoothing stabilized Newton method for finite minimax problems is developed. The spline smoothing technique uses a smooth cubic spline instead of a max function, and, at any fixed point, only a few components of the max function are involved; i.e., it introduces an active set technique, so the proposed method is more efficient for minimizing the maximum function of a large number of complicated functions. Some numerical results comparisons with other methods are also given to show the efficiency of the new method.
引用
收藏
页码:145 / 158
页数:14
相关论文
共 50 条
  • [31] A New Smoothing Newton Method for Symmetric Cone Complementarity Problems
    Liu, Lixia
    Liu, Sanyang
    ALGORITHMIC ASPECTS IN INFORMATION AND MANAGEMENT, 2010, 6124 : 199 - 208
  • [32] SOLVING A CLASS OF INVERSE QP PROBLEMS BY A SMOOTHING NEWTON METHOD
    Xiao, Xiantao
    Zhang, Liwei
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2009, 27 (06) : 787 - 801
  • [33] SOLVING A CLASS OF INVERSE QP PROBLEMS BY A SMOOTHING NEWTON METHOD
    Xiantao Xiao and Liwei Zhang Department of Applied Mathematics
    Journal of Computational Mathematics, 2009, 27 (06) : 787 - 801
  • [34] A REGULARIZED SMOOTHING NEWTON METHOD FOR SYMMETRIC CONE COMPLEMENTARITY PROBLEMS
    Kong, Lingchen
    Sun, Jie
    Xiu, Naihua
    SIAM JOURNAL ON OPTIMIZATION, 2008, 19 (03) : 1028 - 1047
  • [35] A smoothing Newton method for extended vertical linear complementarity problems
    Qi, HD
    Liao, LZ
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1999, 21 (01) : 45 - 66
  • [36] A family of new smoothing functions and a nonmonotone smoothing Newton method for the nonlinear complementarity problems
    Zhu J.
    Liu H.
    Liu C.
    Journal of Applied Mathematics and Computing, 2011, 37 (1-2) : 647 - 662
  • [37] A J-symmetric quasi-newton method for minimax problems
    Azam Asl
    Haihao Lu
    Jinwen Yang
    Mathematical Programming, 2024, 204 : 207 - 254
  • [38] A J-symmetric quasi-newton method for minimax problems
    Asl, Azam
    Lu, Haihao
    Yang, Jinwen
    MATHEMATICAL PROGRAMMING, 2024, 204 (1-2) : 207 - 254
  • [39] Solving Minimax Problems: Local Smoothing Versus Global Smoothing
    Bagirov, A. M.
    Sultanova, N.
    Al Nuaimat, A.
    Taheri, S.
    NUMERICAL ANALYSIS AND OPTIMIZATION, 2018, 235 : 23 - 43
  • [40] A new smoothing quasi-Newton method for nonlinear complementarity problems
    Ma, CF
    APPLIED MATHEMATICS AND COMPUTATION, 2005, 171 (02) : 807 - 823