A New Criterion for Rotor Broken Bar Fault Diagnosis in Line-start and Inverter-fed Induction Motors using Hilbert-Huang Transform

被引:0
|
作者
Faiz, Jawad [1 ]
Ghorbanian, Vahid [1 ]
Ebrahimi, Bashir Mahdi [1 ]
机构
[1] Univ Tehran, Sch Elect & Comp Engn, Ctr Excellence Appl Electromagnet Syst, Tehran, Iran
关键词
Induction motor; broken bars fault; inverter-fed motor; Hilbert-huang transform; Criterion;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper proposes a novel criterion for precise diagnosis of rotor broken bar fault in squirrel-cage induction motor at different operating modes. The criterion is extracted from the energy value of the Hilbert-Huang transform of the faulty motor current. Impact of the line-start and direct torque control modes are investigated at different fault levels, load torques and reference speeds. The new saturated winding function method is also used in order to include the non-linear characteristic of the motor core materials.
引用
收藏
页数:6
相关论文
共 42 条
  • [31] Broken Rotor Bar Fault Diagnosis of a Three-phase Induction Motor using Discrete Wavelet Transform
    Singh, Megha
    Shaik, Abdul Gafoor
    2019 IEEE PES GTD GRAND INTERNATIONAL CONFERENCE AND EXPOSITION ASIA (GTD ASIA), 2019, : 13 - 17
  • [32] A criterion function for broken bar fault diagnosis in induction motor under load variation using wavelet transform
    Faiz, Jawad
    Ebrahimi, B. M.
    Asaie, B.
    Rajabioun, R.
    Toliyat, H. A.
    2007 INTERNATIONAL CONFERENCE ON ELECTRICAL MACHINES AND SYSTEMS, VOLS 1-4, 2007, : 248 - +
  • [33] Criterion Function for Broken-Bar Fault Diagnosis in Induction Motor under Load Variation Using Wavelet Transform
    Faiz, Jawad
    Ebrahimi, B. M.
    Akin, B.
    Asaie, B.
    ELECTROMAGNETICS, 2009, 29 (03) : 220 - 234
  • [34] Broken Rotor Bar and Rotor Eccentricity Fault Detection in Induction Motors Using a Combination of Discrete Wavelet Transform and Teager-Kaiser Energy Operator
    Agah, Gholam Reza
    Rahideh, A.
    Khodadadzadeh, Hosein
    Khoshnazar, Seyed Moslehoddin
    Kia, Shahin Hedayati
    IEEE TRANSACTIONS ON ENERGY CONVERSION, 2022, 37 (03) : 2199 - 2206
  • [35] Broken rotor bar fault detection using Hilbert transform and neural networks applied to direct torque control of induction motor drive
    Ramu, Senthil Kumar
    Irudayaraj, Gerald Christopher Raj
    Subramani, Saravanan
    Subramaniam, Umashankar
    IET POWER ELECTRONICS, 2020, 13 (15) : 3328 - 3338
  • [36] Autonomous fault detection and diagnosis for permanent magnet synchronous motors using combined variational mode decomposition, the Hilbert-Huang transform, and a convolutional neural network
    El-Dalahmeh, Ma'd
    Al-Greer, Maher
    Bashir, Imran
    El-Dalahmeh, Mo'ath
    Demirel, Aykut
    Keysan, Ozan
    COMPUTERS & ELECTRICAL ENGINEERING, 2023, 110
  • [37] Reassigned Short Time Fourier Transform and K-means Method for Diagnosis of Broken Rotor Bar Detection in VSD-fed Induction Motors
    Alejandro Ojeda-Aguirre, Noe
    Garcia-Perez, Arturo
    de Jesus Romero-Troncoso, Rene
    Morinigo-Sotelo, Daniel
    Duque-Perez, Oscar
    Camarena-Martinez, David
    ADVANCES IN ELECTRICAL AND COMPUTER ENGINEERING, 2019, 19 (02) : 61 - 68
  • [38] Rotor Bar Fault Diagnosis in Indirect Field-Oriented Control-Fed Induction Motor Drive Using Hilbert Transform, Discrete Wavelet Transform, and Energy Eigenvalue Computation
    Ramu, Senthil Kumar
    Vairavasundaram, Indragandhi
    Aljafari, Belqasem
    Kareri, Tareq
    MACHINES, 2023, 11 (07)
  • [39] Diagnosis of broken rotor bars in induction motors based on harmonic analysis of fault components using modified adaptive notch filter and discrete wavelet transform
    Taher, Seyed Abbas
    Malekpour, Majid
    Farshadnia, Mohammad
    SIMULATION MODELLING PRACTICE AND THEORY, 2014, 44 : 26 - 41
  • [40] Broken rotor bar fault diagnosis using fast Fourier transform applied to field-oriented control induction machine: simulation and experimental study
    Tarek Ameid
    Arezki Menacer
    Hicham Talhaoui
    Imadeddine Harzelli
    The International Journal of Advanced Manufacturing Technology, 2017, 92 : 917 - 928