Machine Learning-based Fall Detection in Geriatric Healthcare Systems

被引:0
|
作者
Ramachandra, Anita [1 ]
Adarsh, R. [2 ]
Pahwa, Piyush [2 ]
Anupama, K. R. [2 ]
机构
[1] BITS Pilani, Dept Comp Sci & Informat Syst, Bangalore, Karnataka, India
[2] BITS Pilani, Dept Elect & Elect Engn, KK Birla Goa Campus, Sancoale, Goa, India
关键词
Fall detection; odds ratio; machine learning; wearable systems; RISK-FACTORS; FOLLOW-UP; ADULTS; AGE;
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Intelligent IoT-based ambient assisted living systems (AALS) have been a major research focus area in recent times. According to the studies conducted by the Guvt. of India, elderly population in India has reached 8.3% of the total population [40]. Per the National Program for Health Care of the Elderly (NPIICE), the elderly population in India has tripled over the last 50 years, and is projected to increase to 33.32 million by 2021 and 300.96 million by 2051 [41]. Application of machine learning in AALS, such as fall detection, therefore, has the potential to have huge public impact. In this paper, we propose a fall detection system that takes into account not only various wearable sensor node parameter readings for a subject, but also his biological and physiological profile. The profile is used to determine a fall risk category for the subject. We performed machine learning experiments using public datasets for fall detection which included wearable sensor node readings. The algorithms were then retrained by feeding in the risk categorization of the subject, and results from this analyses are presented. The objective of the experiments was to find out the impact of a subject's risk categorization on the accuracy of fall detection. The algorithms presented here form part of a comprehensive geriatric healthcare system under development, which comprises wearable sensor nodes, coordinator nodes, an indoor localization framework and cloud-hosted application servers. A brief overview of the system capabilities is also presented.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Machine learning-based fall detection system for the elderly using passive RFID sensor tags
    Toda, Koichi
    Shinomiya, Norihiko
    2019 13TH INTERNATIONAL CONFERENCE ON SENSING TECHNOLOGY (ICST), 2019,
  • [32] Machine learning-based wavelength detection system
    Kwon, Ik-Hyun
    Choi, Yong-Joon
    Ide, Tomoya
    Noda, Toshihiko
    Takahashi, Kazuhiro
    Sawada, Kazuaki
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2025, 64 (01)
  • [33] Machine learning-based phishing attack detection
    Hossain S.
    Sarma D.
    Chakma R.J.
    International Journal of Advanced Computer Science and Applications, 2020, 11 (09): : 378 - 388
  • [34] Machine learning-based test smell detection
    Pontillo, Valeria
    d'Aragona, Dario Amoroso
    Pecorelli, Fabiano
    Di Nucci, Dario
    Ferrucci, Filomena
    Palomba, Fabio
    EMPIRICAL SOFTWARE ENGINEERING, 2024, 29 (02)
  • [35] Machine Learning-Based Phishing Attack Detection
    Hossain, Sohrab
    Sarma, Dhiman
    Chakma, Rana Joyti
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2020, 11 (09) : 378 - 388
  • [36] Machine Learning-Based Colorectal Cancer Detection
    Blanes-Vidal, Victoria
    Baatrup, Gunnar
    Nadimi, Esmaeil S.
    PROCEEDINGS OF THE 2018 CONFERENCE ON RESEARCH IN ADAPTIVE AND CONVERGENT SYSTEMS (RACS 2018), 2018, : 43 - 46
  • [37] Machine learning-based test smell detection
    Valeria Pontillo
    Dario Amoroso d’Aragona
    Fabiano Pecorelli
    Dario Di Nucci
    Filomena Ferrucci
    Fabio Palomba
    Empirical Software Engineering, 2024, 29
  • [38] Machine learning-based detection of chemical risk
    Grabar, Natalia
    Wandji Tchamp, Ornella
    Maxim, Laura
    E-HEALTH - FOR CONTINUITY OF CARE, 2014, 205 : 725 - 729
  • [39] Machine learning-based guilt detection in text
    Meque, Abdul Gafar Manuel
    Hussain, Nisar
    Sidorov, Grigori
    Gelbukh, Alexander
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [40] Machine Learning-Based Detection of Spam Emails
    Bin Siddique, Zeeshan
    Khan, Mudassar Ali
    Din, Ikram Ud
    Almogren, Ahmad
    Mohiuddin, Irfan
    Nazir, Shah
    SCIENTIFIC PROGRAMMING, 2021, 2021