Explicit simplicial discretization of distributed-parameter port-Hamiltonian systems

被引:19
|
作者
Seslija, Marko [1 ]
Scherpen, Jacquelien M. A.
van der Schaft, Arjan [2 ]
机构
[1] Univ Groningen, Inst Technol Engn & Management, NL-9747 AG Groningen, Netherlands
[2] Univ Groningen, Johann Bernoulli Inst Math & Comp Sci, NL-9747 AG Groningen, Netherlands
关键词
Port-Hamiltonian systems; Dirac structures; Distributed-parameter systems; Structure-preserving discretization; Discrete geometry;
D O I
10.1016/j.automatica.2013.11.020
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Simplicial Dirac structures as finite analogues of the canonical Stokes Dirac structure, capturing the topological laws of the system, are defined on simplicial manifolds in terms of primal and dual cochains related by the coboundary operators. These finite-dimensional Dirac structures offer a framework for the formulation of standard input output finite-dimensional port-Hamiltonian systems that emulate the behavior of distributed-parameter port-Hamiltonian systems. This paper elaborates on the matrix representations of simplicial Dirac structures and the resulting port-Hamiltonian systems on simplicial manifolds. Employing these representations, we consider the existence of structural invariants and demonstrate how they pertain to the energy shaping of port-Hamiltonian systems on simplicial manifolds. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:369 / 377
页数:9
相关论文
共 50 条
  • [31] Stabilization of Unstable Distributed Port-Hamiltonian Systems in Scattering Form
    Macchelli, Alessandro
    Le Gorrec, Yann
    Ramirez, Hector
    IEEE CONTROL SYSTEMS LETTERS, 2022, 6 : 3116 - 3121
  • [32] Twenty years of distributed port-Hamiltonian systems: a literature review
    Rashad, Ramy
    Califano, Federico
    van der Schaft, Arjan J.
    Stramigioli, Stefano
    IMA JOURNAL OF MATHEMATICAL CONTROL AND INFORMATION, 2020, 37 (04) : 1400 - 1422
  • [33] Stochastic Port-Hamiltonian Systems
    Cordoni, Francesco
    Di Persio, Luca
    Muradore, Riccardo
    JOURNAL OF NONLINEAR SCIENCE, 2022, 32 (06)
  • [34] Observability for port-Hamiltonian systems
    Jacob, Birgit
    Zwart, Hans
    2021 EUROPEAN CONTROL CONFERENCE (ECC), 2021, : 2052 - 2057
  • [35] Discrete port-Hamiltonian systems
    Talasila, V
    Clemente-Gallardo, J
    van der Schaft, AJ
    SYSTEMS & CONTROL LETTERS, 2006, 55 (06) : 478 - 486
  • [36] Hamiltonian formulation of distributed-parameter systems with boundary energy flow
    van der Schaft, AJ
    Maschke, BM
    JOURNAL OF GEOMETRY AND PHYSICS, 2002, 42 (1-2) : 166 - 194
  • [37] Port-Hamiltonian Representation and Discretization of Undamped Wave Equation System
    Xu, Qingqing
    Dubljevic, Stevan
    IFAC PAPERSONLINE, 2016, 49 (08): : 309 - 314
  • [38] Weak form of Stokes-Dirac structures and geometric discretization of port-Hamiltonian systems
    Kotyczka, Paul
    Maschke, Bernhard
    Lefevre, Laurent
    JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 361 : 442 - 476
  • [39] Observer-based boundary control of distributed port-Hamiltonian systems
    Toledo, Jesus
    Wu, Yongxin
    Ramirez, Hector
    Le Gorrec, Yann
    AUTOMATICA, 2020, 120 (120)
  • [40] Control by Interconnection of Distributed Port-Hamiltonian Systems Beyond the Dissipation Obstacle
    Macchelli, Alessandro
    Borja, Luis Pablo
    Ortega, Romeo
    IFAC PAPERSONLINE, 2015, 48 (13): : 99 - 104